elimination of conscutive regions (generalization: ones with zeros between)
1 回表示 (過去 30 日間)
古いコメントを表示
I need effectively eliminate (by zeroing) the consecutive "1's" between "-1's" and start/end of column at each column of matrix A, which now can be separated by any number of zeroes. The number of consecutive "1's" between "-1's" and start/end of column is > N. This is a non-trivial generalization of my previous Question.
Again, typical size(A) = [100000,1000].
See example:
A = 1 -1 0 0 1 1 0 1 1 1 1 0 0 0 1 1 -1 0 -1 1 1 -1 0 -1 1 1 1 0 1 -1
For N = 2 the expected result is
Aclean = 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -1 0 -1 0 0 -1 0 -1 1 0 1 0 0 -1
For N = 3 the expected result is
Aclean = 1 -1 0 0 1 0 0 1 0 1 1 0 0 0 0 1 -1 0 -1 1 0 -1 0 -1 1 1 1 0 1 -1
4 件のコメント
採用された回答
Bruno Luong
2018 年 10 月 1 日
A = [1 -1 0;
0 1 1;
0 1 1;
1 1 0;
0 0 1;
1 -1 0;
-1 1 1;
-1 0 -1;
1 1 1;
0 1 -1];
N = 3;
[m,n] = size(A);
Aclean = A;
for j=1:n
Aj = [-1; A(:,j); -1];
i = find(Aj == -1);
c = histc(find(Aj==1),i);
b = c <= N;
im = i(b);
ip = i([false; b(1:end-1)]);
a = accumarray(im,1,[m+2,1])-accumarray(ip,1,[m+2,1]);
mask = cumsum(a);
mask(i) = 1;
Aclean(:,j) = Aclean(:,j).*mask(2:end-1);
end
Aclean
3 件のコメント
その他の回答 (2 件)
Bruno Luong
2018 年 10 月 2 日
That's true, somehow it's a 1D scanning problem.
I think we are close to the limit of MATLAB can do, if faster speed is still needed, then one should go to MEX programming route instead of torturing MATLAB to squeeze out the last once of speed.
参考
カテゴリ
Help Center および File Exchange で Conway's Game of Life についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!