create random diagonalisable matrix

8 ビュー (過去 30 日間)
Gary Soh
Gary Soh 2018 年 9 月 18 日
コメント済み: David Goodmanson 2018 年 9 月 19 日
hi.. I would like to create a random diagonalisable integer matrix. Is there any code for that? thereafter I would want to create matrix X such that each the columns represent the eigenvectors.

採用された回答

David Goodmanson
David Goodmanson 2018 年 9 月 19 日
Hi Gary,
another way:
n = 7 % A is nxn
m = 9 % random integers from 1 to m
X = randi(m,n,n)
D = round(det(X))
lam = 1:n % some vector of unique integer eigenvalues, all nonzero
lamD = lam*D % final eigenvalues
A = round(X*diag(lamD)/X)
A*X - X*diag(lamD) % check
If n is too large and m is too small, this doesn't work sometimes because X comes up as a singular matrix.
  3 件のコメント
Bruno Luong
Bruno Luong 2018 年 9 月 19 日
編集済み: Bruno Luong 2018 年 9 月 19 日
Actually there is no problem of lam to have null element(s). One can also select it randomly in the above code if the spectral probability is matter.
p = 5; % eg
lam = randi(p,1,n)
David Goodmanson
David Goodmanson 2018 年 9 月 19 日
spectral variation does seem like a good idea.

サインインしてコメントする。

その他の回答 (2 件)

Bruno Luong
Bruno Luong 2018 年 9 月 18 日
編集済み: Bruno Luong 2018 年 9 月 19 日
Code for both A and X are integer.
I edit the 1st version of the code (if you happens to see t) essentially a bug correction and better generation and simplification. Second edit: fix issue with non-simple eigen-value.
% Building A random (n x n) integer matrix
% and X (n x n) integer eigen-matrix of A
% meaning A*X = diag(lambda)*X
n = 4;
m = 5;
p = 5;
d = randi(2*m+1,[1,n])-m-1;
C = diag(d);
while true
P = randi(2*p+1,[n,n])-p-1;
detP = round(det(P));
if detP ~= 0
break
end
end
Q = round(detP * inv(P));
A = P*C*Q;
g = 0;
for i=1:n*n
g = gcd(g,abs(A(i)));
end
A = A/g;
lambda = sort(d)*(detP/g);
I = eye(n);
X = zeros(n);
s = 0;
for k=1:n
Ak = A-lambda(k)*I;
r = rank(Ak);
[~,~,E] = qr(Ak);
[p,~] = find(E);
j1 = p(r+1:end);
j2 = p(1:r);
[~,~,E] = qr(Ak(:,j2)');
[p,~] = find(E);
i1 = p(r+1:end);
i2 = p(1:r);
Asub = Ak(i2,j2);
s = mod(s,length(j1))+1;
x = Ak(:,j2) \ Ak(:,j1(s));
y = zeros(n-r,1);
y(s) = -1;
x = round([x; y]*det(Asub));
g = 0;
for i=1:n
g = gcd(g,abs(x(i)));
end
X([j2;j1],k) = x/g;
end
D = diag(lambda);
A
X
% % Verification A*X = X*D
A*X
X*D

Matt J
Matt J 2018 年 9 月 18 日
編集済み: Matt J 2018 年 9 月 18 日
How about this,
A=randi(m,n);
A=A+A.';
[X,~]=eig(A,'vector');
  4 件のコメント
Gary Soh
Gary Soh 2018 年 9 月 18 日
yes
Matt J
Matt J 2018 年 9 月 18 日
編集済み: Matt J 2018 年 9 月 18 日
I don't think the problem is specified well enough. Eigenvectors are always unique only up to a scale factor and, in finite precision computer math, can always be made integer if you multiply them by a large enough scaling constant.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by