How linear system of equations can be solved in matlab
1 回表示 (過去 30 日間)
古いコメントを表示
How we can solve following linear system of equations in matlab?
A1_{x}=1i*a*(A1+A2);
A2_{x}=1i*a*(A1-A2);
A1_{t}=(-1i*a./2)*A1-A2;
A2_{t}=A1+(1i*a./2)*A2;
where A1=A1(x,t) and A2=A2(x,t) and "a" is an arbitrary constant. How can these equations can be solved in matlab?
And A1_{x} means partial derivative of A1 w.r.t "x".
8 件のコメント
Walter Roberson
2018 年 9 月 10 日
What is the I.^{-1} intended to mean?
It is not possible to raise anything to a cell array, not unless you define your own object class and override the power() operator.
採用された回答
madhan ravi
2018 年 9 月 10 日
編集済み: madhan ravi
2018 年 9 月 10 日
Try this @Wajahat:
syms l p q
syms f1(x) f2(x)
%edited after sir Walters comment
S1 = diff(f1) == l.^(-1).*1i.*p.*f1 + l.^(-1).*1i.*q.*f2;
S2 = diff(f2) == l.^{-1}.*1i.*q.*f1 - l.^{-1}.*1i.*p.*f2;
S = dsolve(S1,S2)
S.f2
S.f1
1 件のコメント
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!