PSD calculation using FFT -

13 ビュー (過去 30 日間)
Sergio Roa
Sergio Roa 2018 年 8 月 3 日
編集済み: David Goodmanson 2018 年 8 月 3 日
Hi! I am using the FFT for calculating a PSD using the code provided by MATLAB in Power Spectral Density Estimates Using FFT. The important par of the code is:
N = length(x);
xdft = fft(x);
xdft = xdft(1:N/2+1);
psdx = (1/(Fs*N)) * abs(xdft).^2;
psdx(2:end-1) = 2*psdx(2:end-1);
freq = 0:Fs/length(x):Fs/2;
I want to understand the fourth line, especially the factor (1/(Fs*N)). I am trying to compare with some definitions in vibrations books (Rao,S & Silva, Clarence) and I am not able to find the relation.
psdx = (1/(Fs*N)) * abs(xdft).^2;
Thank you!
  1 件のコメント
dpb
dpb 2018 年 8 月 3 日
Don't know why the factor Fs is in the denominator there...see amplitude-estimation-and-zero-padding

サインインしてコメントする。

回答 (1 件)

David Goodmanson
David Goodmanson 2018 年 8 月 3 日
編集済み: David Goodmanson 2018 年 8 月 3 日
Hi Sergio,
For a time domain signal x(t) and an N-point fft, y = fft(x)/N gives the correct scaling in the frequency domain as you probably know. In this case the spectrum is squared, which brings in two factors of 1/N. Then, since the result is the density energy/Hz, you need to divide by the frequency grid spacing delta_f as well. The overall factor is 1/(N^2 delta_f), but delta_f = Fs/N which leads to the result shown.

カテゴリ

Help Center および File ExchangeParametric Spectral Estimation についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by