How to do exponential curve fitting like y=a*exp(b*x)+c

48 ビュー (過去 30 日間)
MCC
MCC 2018 年 2 月 23 日
コメント済み: Star Strider 2022 年 11 月 9 日
Hi guys,
I have a set of data x and y, which is given below: x=[10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50]; y=[62.1 77.3 92.5 104 112.9 121.9 125 129.4 134 138.2 142.3 143.2 144.6 147.2 147.8 149.1 150.9];
I'd like to to have a curve fitting like y=a*exp(b*x)+c. I tried to use cftool box (custom equation). However, it didn't work well. I am wandering if someone could help me with this.
Thanks
  1 件のコメント
Arturo Gonzalez
Arturo Gonzalez 2020 年 9 月 1 日
編集済み: Arturo Gonzalez 2020 年 9 月 1 日
Per this answer, you can do it as follows:
clear all;
clc;
% get data
dx = 0.02;
x = (dx:dx:1.5)';
y = -1 + 5*exp(0.5*x) + 4*exp(-3*x) + 2*exp(-2*x);
% calculate integrals
iy1 = cumtrapz(x, y);
iy2 = cumtrapz(x, iy1);
iy3 = cumtrapz(x, iy2);
% get exponentials lambdas
Y = [iy1, iy2, iy3, x.^3, x.^2, x, ones(size(x))];
A = pinv(Y)*y;
lambdas = eig([A(1), A(2), A(3); 1, 0, 0; 0, 1, 0]);
lambdas
%lambdas =
% -2.9991
% -1.9997
% 0.5000
% get exponentials multipliers
X = [ones(size(x)), exp(lambdas(1)*x), exp(lambdas(2)*x), exp(lambdas(3)*x)];
P = pinv(X)*y;
P
%P =
% -0.9996
% 4.0043
% 1.9955
% 4.9999

サインインしてコメントする。

採用された回答

Star Strider
Star Strider 2018 年 2 月 23 日
Try this:
x=[10 12.5 15 17.5 20 22.5 25 27.5 30 32.5 35 37.5 40 42.5 45 47.5 50];
y=[62.1 77.3 92.5 104 112.9 121.9 125 129.4 134 138.2 142.3 143.2 144.6 147.2 147.8 149.1 150.9];
f = @(b,x) b(1).*exp(b(2).*x)+b(3); % Objective Function
B = fminsearch(@(b) norm(y - f(b,x)), [-200; -1; 100]) % Estimate Parameters
figure
plot(x, y, 'pg')
hold on
plot(x, f(B,x), '-r')
hold off
grid
xlabel('x')
ylabel('f(x)')
text(27, 105, sprintf('f(x) = %.1f\\cdote^{%.3f\\cdotx}%+.1f', B))
  14 件のコメント
Kate Leary
Kate Leary 2022 年 11 月 9 日
Thank you thank you! Is there a way to calculate prediction bounds as well? I know of predint but can't figure out how to use is without having a cfit or sfit object. Again, thank you for your help!
Star Strider
Star Strider 2022 年 11 月 9 日
My pleasure!
They’re actually plotted (as ‘95% CI’, just so narrow that it’s difficult to see them here. the predict function call in my code calculates them:
[yv,yci] = predict(mdl,xv(:));
and they are then plotted in:
hp{3} = plot(xv, yci, ':r', 'DisplayName', '95% CI');
If you have any further questions, please feel free to follow up here.
.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeLinear Least Squares についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by