fsolve for 2 equation with 2 variables

1 回表示 (過去 30 日間)
Miroslav Mitev
Miroslav Mitev 2017 年 12 月 13 日
コメント済み: Star Strider 2017 年 12 月 13 日
Here is my function, in order to shorten the expression here I add A and B, but in my original function they are inside F(1) and F(2) (i.e. that is not the problem), this is the error I get: Objective function is returning undefined values at initial point.
function F = myfun(x)
N=32;
K=5;
s=1;
b=0.1;
P=5;
A=-2*s^4*x(1)*N+2*s^4*x(1)*K+3*s^2*x(2)*log(2);
B=sqrt(8)*x(2)*s^2*log(2);
g=exprnd(1,1,N-K);
F(1) = sum((g.*(1-b*x(1))/(x(2)*log(2)))-1./g)+(N-K)*((A+sqrt(A^2-B^2))/((4*s^2/sqrt(8))*B))-N*P;
F(2) = b*(sum(log2((g*(1-b*x(1)/x(2)*log(2))))))-(N-K)*log2(1+(2*A^2+2*A*sqrt(A^2-B^2)-B^2)/((4/sqrt(8))*B*(A+(4/sqrt(8))*B+sqrt(A^2-B^2))));
end

採用された回答

Star Strider
Star Strider 2017 年 12 月 13 日
What is the initial point you chose? Your function returns finite values for random non-zero arguments. It returns [NaN NaN] for [0 0] as an input.
The solution is most likely to use an initial point other than [0 0]. I would use rand(2,1).
  7 件のコメント
Matt J
Matt J 2017 年 12 月 13 日
Since it is only a function of 2 variables, you could do a coarse surf() plot of norm(F) and find visually where the roots approximately lie. This would give you a better initial guess than simply randomizing.
Star Strider
Star Strider 2017 年 12 月 13 日
My pleasure.
It might be useful for you to post the symbolic expression you are coding as well as your code for it as a new Question, since that seems to be the problem.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumerical Integration and Differentiation についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by