'Undefined Function or Variable' Error when Function is Defined
2 ビュー (過去 30 日間)
古いコメントを表示
My model contains two functions, cp(t) and ct(t). In my original (working) code (see below), cp(t) and ct(t) are each defined by one functional form. Now, I would like to study the behavior of the dependent variables for different functional forms of cp(t) and ct(t). How can I do this?
My Attempt: I created two matrices in the ODE solver; in the first matrix, each column represents a function for cp(t), and in the second matrix, each column represents a function for ct(t). When I run the ODE solver, I get the error "Undefined Function or Variable" for cp(t).
Thank you!
-----------------------------------------------
ORIGINAL, WORKING CODE
ODE File:
function dy = short_ODE(t,y)
b = 21.5;
d = 0.167;
qe = 0.0542;
q1 = 0.000257;
q2 = 0.0008;
dy(1,1) = 10*b*y(9)*(cp(t)/(cp(t)+ct(t)))-ne(t)*y(1)-qe*y(1);
dy(2,1) = ne(t)*y(1)-n1(t)*y(2)-f1(t)*y(2)-q1*(y(2)^2)/cp(t);
dy(3,1) = n1(t)*y(2)-n2(t)*y(3)-f2(t)*y(3)-q2*(y(3)^2)/cp(t);
dy(4,1) = n2(t)*y(3)-np(t)*y(4)-fp(t)*y(4);
dy(5,1) = np(t)*y(4)/2-(1+d)*y(5)+y(9);
dy(6,1) = -(1+d)*y(6)+y(5);
dy(7,1) = -(1+d)*y(7)+y(6);
dy(8,1) = -(1+d)*y(8)+y(7);
dy(9,1) = -(1+d)*y(9)+y(8);
function y = T(t)
T0 = 21.5;
y = T0 + 0.6346*cos(t*2*pi/365) + 0.7731*sin(t*2*pi/365);
end
% Nested cp(t)
function y = cp(t)
y = 135000-35000*(1.446*cos(t*2*pi/365)+0.7109*sin(t*2*pi/365)...
+1.347*cos(2*t*2*pi/365)+1.408*sin(2*t*2*pi/365)...
-0.9942*cos(3*t*2*pi/365)-0.2396*sin(3*t*2*pi/365));
end
% Nested ct(t)
function y = ct(t)
epsilon = 1e-10;
y = 0*t + epsilon;
end
% Nested ne
function y = ne(t)
y = 0.693/(1.10316852+12.55262944/(1+(T(t)/15.21894679)^6.468691289));
end
% Nested n1
function y = n1(t)
y = 0.693/(2.711278535+18.35202441/(1+(T(t)/15.61912844)^5.845513817));
end
% Nested f1
function y = f1(t)
y = 0.666733-0.056977*T(t)+0.00125224*T(t)^2;
end
% Nested n2
function y = n2(t)
y = 0.693/(4.244561306+136.3457233/(1+(T(t)/10.3599642)^4.783523801));
end
% Nested f2
function y = f2(t)
y = 0.666733-0.056977*T(t)+0.00125224*T(t)^2;
end
% Nested np
function y = np(t)
y = 0.693/(8.583819474+18.15593517/(1+(T(t)/21.5533767)^7.852462638));
end
% Nested fp
function y = fp(t)
y = 0.666733-0.056977*T(t)+0.00125224*T(t)^2;
end
end
ODE Solver:
clear all;
tf = 1000;
dt = 1;
t = 0:dt:tf;
y0 = [3954200.8835438923;2310300.5386356956;2007000.7121853685;
103780.6956163843;1289400.7821495022/100/5;
1289400.7821495022/100/5;1289400.7821495022/100/5;
1289400.7821495022/100/5;1289400.7821495022/100/5];
[t,y] = ode15s(@short_ODE,t,y0);
A = y(:,5)+y(:,6)+y(:,7)+y(:,8)+y(:,9);
plot(t,A,'b');
xlabel('Time (in days)');
ylabel('Population');
h_xlabel = get(gca,'XLabel');
set(h_xlabel,'FontSize',14);
h_ylabel = get(gca,'YLabel');
set(h_ylabel,'FontSize',14);
set(gca,'fontName','Helvetica');
MODIFIED CODE WITH ERROR
ODE Solver:
clear;
tf = 1000;
dt = 1;
t = 1:dt:tf;
y0 = [3954200.8835438923;2310300.5386356956;2007000.7121853685;
103780.6956163843;1289400.7821495022/100/5;
1289400.7821495022/100/5;1289400.7821495022/100/5;
1289400.7821495022/100/5;1289400.7821495022/100/5];
m = min(c(t));
d = m/10;
i = 0;
for p = 0:d:m % This is where I created matrices cp(:,i) and ct(:,i)
i = i + 1;
a(1:length(c(t))) = p;
cp(:,i) = transpose(a); %#ok<*SAGROW>
ct(:,i) = transpose(c(t)) - transpose(a);
end
for j = 1:11
calle1 = @(t,y) e1_ODE(t,y,j);
[t,y] = ode15s(calle1,t,y0);
A(:,j) = y(:,5)+y(:,6)+y(:,7)+y(:,8)+y(:,9);
plot(t,A,'b');
xlabel('Time (in days)');
ylabel('Population');
h_xlabel = get(gca,'XLabel');
set(h_xlabel,'FontSize',14);
h_ylabel = get(gca,'YLabel');
set(h_ylabel,'FontSize',14);
set(gca,'fontName','Helvetica');
hold on
end
% Nested c(t)
function y = c(t)
y = 135000-35000*(1.446*cos(t*2*pi/365)+0.7109*sin(t*2*pi/365)...
+1.347*cos(2*t*2*pi/365)+1.408*sin(2*t*2*pi/365)...
-0.9942*cos(3*t*2*pi/365)-0.2396*sin(3*t*2*pi/365));
end
ODE File:
function dy = e1_ODE(t,y,j) % Here, I have index as an input, which wasn't needed
% for the working code
b = 21.5;
d = 0.167;
qe = 0.0542;
q1 = 0.000257;
q2 = 0.0008;
epsilon = 1e-10;
dy(1,1) = 10*b*y(9)*(cp(t,j)/(cp(t,j)+ct(t,j)))-ne(t)*y(1)-qe*y(1);
dy(2,1) = ne(t)*y(1)-n1(t)*y(2)-f1(t)*y(2)-q1*(y(2)^2)/cp(t,j)+epsilon;
dy(3,1) = n1(t)*y(2)-n2(t)*y(3)-f2(t)*y(3)-q2*(y(3)^2)/cp(t,j)+epsilon;
dy(4,1) = n2(t)*y(3)-np(t)*y(4)-fp(t)*y(4);
dy(5,1) = np(t)*y(4)/2-(1+d)*y(5)+y(9);
dy(6,1) = -(1+d)*y(6)+y(5);
dy(7,1) = -(1+d)*y(7)+y(6);
dy(8,1) = -(1+d)*y(8)+y(7);
dy(9,1) = -(1+d)*y(9)+y(8);
function y = T(t)
T0 = 21.5;
y = T0 + 0.6346*cos(t*2*pi/365) + 0.7731*sin(t*2*pi/365);
end
% Nested ne
function y = ne(t)
y = 0.693/(1.10316852+12.55262944/(1+(T(t)/15.21894679)^6.468691289));
end
% Nested n1
function y = n1(t)
y = 0.693/(2.711278535+18.35202441/(1+(T(t)/15.61912844)^5.845513817));
end
% Nested f1
function y = f1(t)
y = 0.666733-0.056977*T(t)+0.00125224*T(t)^2;
end
% Nested n2
function y = n2(t)
y = 0.693/(4.244561306+136.3457233/(1+(T(t)/10.3599642)^4.783523801));
end
% Nested f2
function y = f2(t)
y = 0.666733-0.056977*T(t)+0.00125224*T(t)^2;
end
% Nested np
function y = np(t)
y = 0.693/(8.583819474+18.15593517/(1+(T(t)/21.5533767)^7.852462638));
end
% Nested fp
function y = fp(t)
y = 0.666733-0.056977*T(t)+0.00125224*T(t)^2;
end
end
0 件のコメント
採用された回答
Josh Meyer
2017 年 11 月 3 日
Looks like the issue is you define cp in the workspace and the function can't access that variable when it gets called. So, try passing cp to the ode function:
calle1 = @(t,y) e1_ODE(t,y,j,cp);
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Ordinary Differential Equations についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!