Confusion about convolution theorem in matlab

14 ビュー (過去 30 日間)
Felix Wong
Felix Wong 2017 年 9 月 16 日
編集済み: Arkaprabho Pal 2020 年 4 月 21 日
Convolution theorem in fourier transform states:
Fourier transform of a convolution of two vectors A and B is pointwise product of Fourier transform of each vector. (Ref: https://en.wikipedia.org/wiki/Convolution_theorem)
Now let A=B=[0.7, 0.2, 0.1], pointwise product of A and B can be obtained through the code:
fft(A).*fft(A)
The result is [1.000000000000000 + 0.000000000000000i, 0.295000000000000 - 0.095262794416288i, 0.295000000000000 + 0.095262794416288i].
Convolution of A and B can be obtained by inverse Fourier transform:
ifft(fft(A).*fft(A))
The result is C=[0.530000000000000 0.290000000000000 0.180000000000000].
However, convolution of A and B can be calculated in the matlab code:
conv(A,A)
The result is C'=[0.490000000000000 0.280000000000000 0.180000000000000 0.040000000000000 0.010000000000000].
The result vectors C is not equal to C', contradictory to the convolution theorem. This example shows my confusion on Fourier tranform in matlab code and convolution theorem. Would anyone help me to understand this?
Thanks very much:)
  1 件のコメント
Arkaprabho Pal
Arkaprabho Pal 2020 年 4 月 21 日
編集済み: Arkaprabho Pal 2020 年 4 月 21 日
The convolution theorem says, roughly, that convolving two sequences is the same as multiplying their Fourier transforms. In order to make this precise, it is necessary to pad the two vectors with zeros and ignore roundoff error. Also make sure to use 'full' keyword in conv function.
t = linspace(0,1,200)
x = sin(2*pi*t)
y = exp(-2*t)
X = fft([x zeros(1,length(y)-1)])
Y = fft([y zeros(1,length(x)-1)])
then conv(x,y,'full') = ifft(X.*Y)

サインインしてコメントする。

採用された回答

Matt J
Matt J 2017 年 9 月 16 日
編集済み: Matt J 2017 年 9 月 16 日
There are differences between the continuous-domain convolution theorem and the discrete one. In particular, the discrete domain theorem says that ifft(fft(A).*fft(B)) gives the circulant convolution of A with B. You can get obtain a linear convolution result from a circulant convolution if you do sufficient zero-padding:
>> ifft(fft(A,5).*fft(A,5),5)
ans =
0.4900 0.2800 0.1800 0.0400 0.0100
  5 件のコメント
Image Analyst
Image Analyst 2017 年 9 月 18 日
Every time you convolve A with something, it adds a length of A to the something. So A**A is twice as long A**(A**A) is 3 times as long, etc. Don't do the padding yourself or else it will be even longer. Just specify the 'full' option in conv() or conv2() and it will enlarge the array by the correct amount for you.
Felix Wong
Felix Wong 2017 年 9 月 19 日
編集済み: Felix Wong 2017 年 9 月 19 日
Thanks @Image Analyst. I have tried that, and using default 'full' option.
I believe it is related to FFT in the synax 'fft(A,n)'. An improperly n will result some misleading result for ifft(fft(A,n).*fft(A,n),n).
Since B=conv(A,A) has a length 2L-1 (given length of A is L), I guess n should be set to no less than 2L-1. I am not sure if it is correct?

サインインしてコメントする。

その他の回答 (1 件)

Image Analyst
Image Analyst 2017 年 9 月 16 日
Try this:
A = [0.7, 0.2, 0.1]
B = [0.7, 0.2, 0.1]
Cconv = conv(A, B)
% Now if C = A ** B
% Then fftC = fftA * fftB
fftA = fft(A)
fftB = fft(B)
fftC = fftA .* fftB
% If we inverse transform this to get C back:
% ifft(fftC) = C = ifft(fftA .* fftB)
C2 = ifft(fftC)
C3 = ifft(fftA .* fftB)
I think the difference you're seeing in Cconv and C2 or C3 is that CConv is the full convolution - 5 elements - while doing it the fft way, you are clipping to the same size as your input arrays - 3 elements - and so inherently you have a rect function in there multiplying your A and B. And the convolution of a rect is a triangle function, which, because your array is so small, wreaks havoc on your values. With much larger arrays, it won't be as noticeable.
  1 件のコメント
Felix Wong
Felix Wong 2017 年 9 月 17 日
Thank you for the answer.
Actually, I am trying to calculate N times convolution of an input vector A of length L, by using FFT algorithm. The length L is relatively small. I am not sure if your suggestions can work for my situation, since discrete FFT method will truncate vectors.

サインインしてコメントする。

カテゴリ

Help Center および File Exchange傅里叶分析和滤波 についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!