# Speed up fminbnd using vectorization

20 ビュー (過去 30 日間)
Luca Gagliardone 2017 年 8 月 12 日

I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca

サインインしてコメントする。

### 採用された回答

Matt J 2017 年 8 月 12 日
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.

サインインしてコメントする。

### その他の回答 (2 件)

Luca Gagliardone 2017 年 8 月 16 日

What if I create a vector x containing all the possible values for minimization:
x = permute(repmat([0:0.01:2]',[1,A,B,C]),[2,3,4,1]);
variable2 = repmat(variable,[1,1,1,length(x)]);
fun = (x .* variable2).^2;
min_ = min(fun,[],4);
That would do an approximation of the above? Thanks.
Luca
##### 0 件のコメント表示非表示 -1 件の古いコメント

サインインしてコメントする。

Nick Durkee 2018 年 5 月 24 日

I actually developed a solution to this problem for my research. It's available on the file exchange.

サインインしてコメントする。

### Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!