Speed up fminbnd using vectorization
1 回表示 (過去 30 日間)
古いコメントを表示
I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca
0 件のコメント
採用された回答
Matt J
2017 年 8 月 12 日
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.
0 件のコメント
その他の回答 (2 件)
Nick Durkee
2018 年 5 月 24 日
編集済み: Matt J
2018 年 5 月 24 日
I actually developed a solution to this problem for my research. It's available on the file exchange.
0 件のコメント
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!