Speed up fminbnd using vectorization

1 回表示 (過去 30 日間)
Luca Gagliardone
Luca Gagliardone 2017 年 8 月 12 日
編集済み: Matt J 2018 年 5 月 24 日
I am trying to optimize this piece of code. I am using the function fminbnd on a vector, splitting the task on its single entries using a loop.
Would it be possible to speed it up vectorizing the process?
for i = 1:A
for ii= 1:B
for iii = 1:C
fun = @(x) (x * variable(i,ii,iii))^2 ;
[arg_min(i,ii,iii), min_(i,ii,iii)] = fminbnd(fun,0,2);
end
end
end
Thanks for the attention.
Sincerely
Luca

採用された回答

Matt J
Matt J 2017 年 8 月 12 日
In your example, the solution is always x=0, so a trivial vectorized solution would be
arg_min=zeros(A,B,C);
min_ = arg_min;
More generally, no, vectorization will not help in a situation like this. You could consider parallelizing the loop using PARFOR.

その他の回答 (2 件)

Luca Gagliardone
Luca Gagliardone 2017 年 8 月 16 日
編集済み: Luca Gagliardone 2017 年 8 月 16 日
What if I create a vector x containing all the possible values for minimization:
x = permute(repmat([0:0.01:2]',[1,A,B,C]),[2,3,4,1]);
variable2 = repmat(variable,[1,1,1,length(x)]);
fun = (x .* variable2).^2;
min_ = min(fun,[],4);
That would do an approximation of the above? Thanks.
Luca

Nick Durkee
Nick Durkee 2018 年 5 月 24 日
編集済み: Matt J 2018 年 5 月 24 日
I actually developed a solution to this problem for my research. It's available on the file exchange.

カテゴリ

Help Center および File ExchangeOptimization についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by