Search multiple matrices for values at common index positions
3 ビュー (過去 30 日間)
古いコメントを表示
I am trying to analyse several tens of 90x90 matrices and I want to find a summary matrix that only shows a logical 1 if an element has any non zero value that is common to all the matrices at the same index position. In the example below the desired result is to show that there is a value in common between all matrices in position [2,2] and [4,4]. I do not wish to show the values themselves or compare their values. I've tried working with ismember , find , intersect , a==b for just two matrices but nothing seems to do the trick. I can't seem to find a similar query in the archives either. Does anyone know of a suitable function or do I need to write an element by element search routine across all the matrices . All matrices are double and all identically sized .
a =
1 0 0 0 0
0 3 0 0 0
0 0 5 0 0
0 0 0 7 8
>> d = [ 0 0 0 12 0; 0 3 0 4 0; 0 0 0 0 0 ; 34 0 0 9 0]
d =
0 0 0 12 0
0 3 0 4 0
0 0 0 0 0
34 0 0 9 0
>> e = [ 0 0 0 0 0; 0 15 0 0 0; 0 0 0 2 0 ; 0 0 0 5 0]
e =
0 0 0 0 0
0 15 0 0 0
0 0 0 2 0
0 0 0 5 0
>> Result=[ 0 0 0 0 0; 0 1 0 0 0; 0 0 0 0 0 ; 0 0 0 1 0]
Result =
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 1 0
6 件のコメント
Stephen23
2015 年 6 月 24 日
編集済み: Stephen23
2015 年 6 月 24 日
Learn to use the dimensions of arrays and MATLAB will fly...
MATLAB is a high-level language, and it works best when data is kept together as much as possible. Avoid nesting, multiple variables and loops (unless you really have to). Then you can use vectorized code to really get the best out of MATLAB: neat and fast operations.
Good luck and have fun!
採用された回答
James Tursa
2015 年 6 月 23 日
編集済み: James Tursa
2015 年 6 月 23 日
If you are just looking for when there are non-zero entries in the same index in all matrices, e.g.,
Result = a & d & e;
To process "several tens" of these matrices, you may want to write a function. How the function is written will depend on how you have your matrices stored (individual variables, members of a cell array or struct, etc). E.g., if they are individual variables, then a function like this might be a good start:
function g = allnz(varargin)
n = nargin;
if( n )
g = logical(varargin{1});
for k=2:n
g = g & varargin{k};
end
else
g = [];
end
Then you could call it like this:
Result = allnz(a,d,e);
2 件のコメント
Guillaume
2015 年 6 月 24 日
In my opinion, a better implementation (no loop) of your allnz would be:
function g = allnz(varargin)
dimplus1 = ndims(varargin{1}) + 1;
g = all(cat(dimplus1, varargin{:}), dimplus1);
end
その他の回答 (4 件)
Guillaume
2015 年 6 月 23 日
編集済み: Guillaume
2015 年 6 月 24 日
As given in the example:
result = all(cat(3, a, d, e), 3)
Note that if you tens of these matrices, rather than putting them in individual variables, you're better off putting them in a cell array:
allmatrices = {a, b, c, d, e, f, ...};
In which case the above is simply:
result = all(cat(3, allmatrices{:}), 3);
Or even better since they all have the same size, just stack them all up in the third dimension as I have done as a first step, so:
allmatrices = cat(3, a, b, c, d, e, f, ...);
In which case the code is simply:
result = all(allmatrices, 3);
Azzi Abdelmalek
2015 年 6 月 23 日
編集済み: Azzi Abdelmalek
2015 年 6 月 23 日
a=[ 1 0 0 0 0 ; 0 3 0 0 0 ; 0 0 5 0 0 ; 0 0 0 7 8]
d=[ 0 0 0 12 0; 0 3 0 4 0; 0 0 0 0 0 ; 34 0 0 9 0]
e=[ 0 0 0 0 0; 0 15 0 0 0; 0 0 0 2 0 ; 0 0 0 5 0]
aa=~~a
dd=~~d
ee=~~e
aa&dd&ee
Martin Brown
2015 年 6 月 24 日
As above, reformat your code to put the matrices into a single 3D matrix, something like:
A(:,:,1) = [1 0; 0 1];
A(:,:,2) = [2 0; 0 0];
find(sum(A(:,:,1:end)~=0,3)==2);
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Logical についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!