
Fitting to exp plus a constant
96 ビュー (過去 30 日間)
古いコメントを表示
Hello, I am trying to fit some data to an exponential + constant function and have this approach that I came across:
% code is giving good results with template equation : % y = a.*(1-exp(b.*(x-c))) + d;
f = @(a,b,c,d,x) a.*(1-exp(b.*(x-c))) + d;
obj_fun = @(params) norm(f(params(1), params(2), params(3), params(4),x)-y);
sol = fminsearch(obj_fun, [y(end)-y(1),0,0,y(1)]);
a_sol = sol(1);
b_sol = sol(2);
c_sol = sol(3);
d_sol = sol(4);
y_fit = f(a_sol, b_sol,c_sol ,d_sol, x);
figure
plot(x,y,'-+b',x,y_fit,'-r'); grid on;
legend('signal','aexp(b(x-c))+d');
title(['a=',num2str(a_sol,'%0.2f'), ' b=',num2str(b_sol),' c=',num2str(c_sol),' d=',num2str(d_sol)],'FontSize',14,'Color','b')
Whilst the fit is good, the value of "a" seems wrong (at the expense of "d")

I've tried another approach that I came across from Steven Lord (as i don't really understand the code above)
D=[x y]
% It would be better to parametrize the function as
xmin=min(x);
fitfun = fittype( @(a,b,c,x) a*exp(b*(x-xmin))+c );
[fitted_curve,gof] = fit(D(:,1),D(:,2),fitfun,'StartPoint',[max(y) -2 min(y)])
plot(fitted_curve,'r-')
But I get this error:
Error using fit>iFit (line 362)
Inf computed by model function, fitting cannot continue.
Try using or tightening upper and lower bounds on coefficients.
Error in fit (line 117)
[fitobj, goodness, output, convmsg] = iFit( xdatain, ydatain, fittypeobj, ...
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
Error in PlotAnalysis/FitExp1ContstantButtonPushed (line 1361)
[fitted_curve,gof] = fit(D(:,1),D(:,2),fitfun,'StartPoint',[max(y) -2 min(y)])
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
0 件のコメント
回答 (1 件)
Matt J
2025 年 12 月 17 日 12:42
編集済み: Matt J
2025 年 12 月 18 日 13:59
It looks like the fit was successful, but the model function is overparametrized, so there is no specific value for a (or c) that you can count on,

where
. Whatever the decay rate b needed for the fit, there are infinite choices for a and c that will produce the same A (and thus the same curve).
12 件のコメント
Matt J
2025 年 12 月 17 日 18:05
編集済み: Matt J
2025 年 12 月 17 日 18:06
I think you would get a better handle on that if you familiarized yourself with the fminspleas documentation. Briefly, though,
(1) 0.005 is the initial guess for b
(2) a and c are the coefficients applied to the exp(-b*x) and the 1 respectively in the input {@(b,x) exp(-b*x),1}. Their fitted values are returned in "ac". They do not require initial guess values.
参考
カテゴリ
Help Center および File Exchange で Linear and Nonlinear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!



