Info

この質問は閉じられています。 編集または回答するには再度開いてください。

Creating CNN architecture for binary classification

6 ビュー (過去 30 日間)
Reem
Reem 2025 年 7 月 28 日
閉鎖済み: John D'Errico 2025 年 7 月 29 日
I’m reaching out to kindly ask if somone could review the CNN architecture I’ve implemented in MATLAB. The code is running as expected, but I’d appreciate your expert opinion to confirm whether the structure is sound and appropriate for the task.
Below is a snippet of the architecture and training configuration:
matlab
CopyEdit
%% === CNN Architecture ===
layers = [
sequenceInputLayer(1, 'Name', 'input', 'MinLength', minTrainLen)
convolution1dLayer(5, 32, 'Padding', 'same', 'Name', 'conv1')
batchNormalizationLayer('Name', 'bn1')
reluLayer('Name', 'relu1')
maxPooling1dLayer(2, 'Stride', 2, 'Name', 'pool1')
convolution1dLayer(3, 64, 'Padding', 'same', 'Name', 'conv2')
batchNormalizationLayer('Name', 'bn2')
reluLayer('Name', 'relu2')
dropoutLayer(0.3, 'Name', 'dropout1')
globalAveragePooling1dLayer('Name', 'gap')
fullyConnectedLayer(32, 'Name', 'fc1')
reluLayer('Name', 'relu3')
fullyConnectedLayer(2, 'Name', 'fc_output')
softmaxLayer('Name', 'softmax')
classificationLayer('Name', 'output')
];
%% === Training Options ===
options = trainingOptions('adam', ...
'InitialLearnRate', 1e-3, ...
'MaxEpochs', 30, ...
'MiniBatchSize', max(1, min(64, numel(XTrainFinal))), ...
'Shuffle', 'every-epoch', ...
'ValidationData', {XVal, YVal}, ...
'ValidationFrequency', 5, ...
'ValidationPatience', 2, ...
'Verbose', false, ...
'Plots', 'none', ...
'ExecutionEnvironment', 'auto');
  1 件のコメント
Matt J
Matt J 2025 年 7 月 28 日
編集済み: Matt J 2025 年 7 月 28 日
I believe you already asked that here,
The statement of the question hasn't changed much, so I don't think you will get very different answers.

回答 (0 件)

この質問は閉じられています。

タグ

製品


リリース

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by