How is calculated the determinant of a matrix containing a fourier transform?

8 ビュー (過去 30 日間)
Erkan
Erkan 2025 年 7 月 8 日
コメント済み: Erkan 2025 年 7 月 9 日
Hi everyone. Let's assume that there are two paired differential equations as shown in equations 1 and 2 and that these equations are solved, that is, the values ​​of A and B are known. However, to find the behavior of and in the frequency domain, the time derivatives of these equations are taken by taking the Fourier transform to obtain equations 3 and 4. Then, when the linear equation system is formed using equations 3 and 4, how is jw calculated when finding the determinant of the coefficient matrix of the system?
Sample number: N=1024 and Sample frequency: Fs=4kHz
(1)
+ (2)
(3)
(4)
(5)
  3 件のコメント
Torsten
Torsten 2025 年 7 月 8 日
編集済み: Torsten 2025 年 7 月 8 日
I thought you want to reconstruct F_A(omega) and F_B(omega) given A(omega) and B(omega). So why do you need a determinant to do this ? You can simply solve equation (3) for F_A(omega) and equation (4) for F_B(omega) (after computing the Fourier Transforms of A(t) and B(t)).
Erkan
Erkan 2025 年 7 月 8 日

What I want to learn is how to calculate jw? w=2*pi*Fs/1024*(0:Fs/2)?

サインインしてコメントする。

採用された回答

Matt J
Matt J 2025 年 7 月 8 日
編集済み: Matt J 2025 年 7 月 8 日
N=1024; Fs=4000;
f=(0:(N-1-ceil((N-1)/2)))/N*Fs;
jw = 1j*2*pi*f;
determinant = (jw-x2).*y1 - (jw-x1).*y2 ;
  8 件のコメント
Matt J
Matt J 2025 年 7 月 9 日
編集済み: Matt J 2025 年 7 月 9 日
The general formula for the (two-sided) discrete frequency axis is,
NormalizedAxis = -ceil((N-1)/2) : +floor((N-1)/2);
deltaOmega=2*pi*Fs/N; %frequency sample spacing
w=deltaOmega*NormalizedAxis;
Erkan
Erkan 2025 年 7 月 9 日
ok. Thank you very much

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeDiscrete Fourier and Cosine Transforms についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by