Modifying loss function in neural network to be dependent on previous losses

9 ビュー (過去 30 日間)
Gad Licht
Gad Licht 2025 年 4 月 15 日
コメント済み: Gad Licht 2025 年 4 月 20 日
Hi. I am training a special neural network and after each iteration I want to modify loss function so that it changes based on loss and fit from iteration right before. How could I do this? I do not need example of code that produces good results, just code thatd does that. A second question, is how do I close automautically graphs that open up while training in matlab, I have tried many solutions I believe would work so pleas eonly answer if you have succedded in this special case yourself.
  2 件のコメント
Torsten
Torsten 2025 年 4 月 15 日
編集済み: Torsten 2025 年 4 月 15 日
For your first question maybe "Dynamic Neural Networks" is the key term if "iteration" stands for "time":
If not, you should explain the reason behind the need to modify the loss function besed on iteration.
Gad Licht
Gad Licht 2025 年 4 月 16 日
Hi, I do nto think that works because its not an RNN, LSTM, or similar. More of a modified CNN. Time changes in loss function are also not dependent on data, but previous losses and fit.

サインインしてコメントする。

回答 (1 件)

Matt J
Matt J 2025 年 4 月 17 日

カテゴリ

Help Center および File ExchangeSequence and Numeric Feature Data Workflows についてさらに検索

製品


リリース

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by