How plot 2D and 3D of a function with contain wiener process?
5 ビュー (過去 30 日間)
古いコメントを表示
I have a function that includes a Wiener process, which I am encountering for the first time in a solution. I want to plot this function but am unsure how to proceed, as I have no experience plotting such functions
(sech(0.288e3 / 0.143e3 * t + x) ^ (0.1e1 / 0.4e1)) * exp(i * (-0.3e1 * x - 0.3e1 * t + (2 * W(t))))

0 件のコメント
採用された回答
Sameer
2024 年 12 月 13 日
Hi @salim saeed
The Wiener process can be simulated using random walks.
Here's an example of how you can plot your function:
% Parameters
t_max = 20; % Maximum time
x_max = 20; % Maximum space
dt = 0.01; % Time step
dx = 0.1; % Space step
% Time and space vectors
t = 0:dt:t_max;
x = -x_max:dx:x_max;
% Initialize Wiener process
W = zeros(size(t));
for i = 2:length(t)
W(i) = W(i-1) + sqrt(dt) * randn; % Random walk
end
% Preallocate solution matrix
U = zeros(length(x), length(t));
% Calculate the function
for i = 1:length(x)
for j = 1:length(t)
U(i, j) = (sech(0.288e3 / 0.143e3 * t(j) + x(i)) ^ (0.1e1 / 0.4e1)) * ...
exp(1i * (-0.3e1 * x(i) - 0.3e1 * t(j) + (2 * W(j))));
end
end
% Plot the real part of the solution
figure;
surf(t, x, real(U));
shading interp;
xlabel('Time (t)');
ylabel('Transformed Space (\xi)');
zlabel('Amplitude (u)');
title('Stochastic Kudryashov Soliton Solution with Multiplicative Noise (Wiener Process)');
colorbar;
Hope this helps!
その他の回答 (0 件)
参考
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!