loading and training an existing network.

3 ビュー (過去 30 日間)
Mark Hubelbank
Mark Hubelbank 2024 年 10 月 7 日
編集済み: Matt J 2024 年 10 月 8 日
I am trying define a network, then train it in multiple sessions. The problem is that I can't get the load or read of the network to work in the second session. The code is:
layers = [ ...
sequenceInputLayer(270)
bilstmLayer(numHiddenUnits,OutputMode="last")
fullyConnectedLayer(numClasses)
softmaxLayer
classificationLayer]
options = trainingOptions("adam", ...
InitialLearnRate=0.002,...
MaxEpochs=15, ...
Shuffle="never", ...
GradientThreshold=1, ...
Verbose=false, ...
ExecutionEnvironment="gpu", ...
Plots="training-progress");
clabels=categorical(labels);
numLables=numel(clabels)
load("savednet.mat","layers");
net = trainNetwork(data,clabels,layers,options);
save("savednet","net");
I have tried many variations of the load command and it always gives an error on the second argument:
Warning: Variable 'layers' not found.
Exactly what should that look like and then how should it be used as input to the trainNetwork routine?
  7 件のコメント
Mark Hubelbank
Mark Hubelbank 2024 年 10 月 7 日
移動済み: Walter Roberson 2024 年 10 月 7 日
Perhaps I don't understand how one can train in stages then. The idea is that the training will be continued in the second and subsequent sessions. Sort of a continuing transfer learning. The idea is that over time the network keeps improving. perhaps I should be using trainnet instead of trainnetwork. Then it would appear the call is:
load(filename,"net1","layers");
net=trainnet(data,clabels,net1,"crossentropy",options);
Is this the correct direction?
Walter Roberson
Walter Roberson 2024 年 10 月 7 日
Probably
net1 = trainnet(data,clabels,net1,"crossentropy",options);

サインインしてコメントする。

採用された回答

Matt J
Matt J 2024 年 10 月 7 日
previous = load("savednet","net","layers");
net = trainNetwork(data,clabels,previous.net,options);
  1 件のコメント
Matt J
Matt J 2024 年 10 月 7 日
編集済み: Matt J 2024 年 10 月 8 日
perhaps I should be using trainnet instead of trainnetwork.
It would be better, since trainnet is newer and has more flexibility. However, it won't make a difference as far as how to resume the training of a pre-existing network..

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeImage Data Workflows についてさらに検索

製品


リリース

R2024b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by