moving median with variable window
5 ビュー (過去 30 日間)
古いコメントを表示
Is there any way how to effectively generalize movmedian function to work with variable window length or local variable k-point median values, where k is vector with the same length as length of input vector (lenght(x) = lenght(k))?
Example:
x = 1:6
k = 2,3,3,5,3,2
M = movmedian_vk(x,k)
M = 1, 2, 3, 4, 5, 5.5
My naive solution looks like:
function M = movmedian_vk(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
2 件のコメント
回答 (3 件)
Bruno Luong
2024 年 9 月 23 日
編集済み: Bruno Luong
2024 年 9 月 23 日
One way (for k not very large)
x = 1:6
k = [2,3,4,5,3,2]; % Note: I change k(3) to 4
winmedian(x,k)
function mx = winmedian(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
7 件のコメント
Matt J
2024 年 9 月 24 日
編集済み: Matt J
2024 年 9 月 24 日
When there are a small number of unique k(i), yes, yours is best. However, more generally, Bruno's is faster:
k = randi(30,1,1e5);
x = rand(1,1e5);
timeit(@() winmedianMichal(x,k))
timeit(@() winmedianBruno(x,k))
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
function mx = winmedianBruno(x,k)
x = reshape(x, 1, []);
k = reshape(k, 1, []);
K = max(k);
p = floor(K/2);
q = K-p;
qm1 = q-1;
r = [x(q:end), nan(1,qm1)];
c = [nan(1,p), x(1:q)];
X = hankel(c,r);
i = (-p:qm1).';
kb = floor(k/2);
kf = k-1-kb;
mask = i < -kb | i > kf;
X(mask) = NaN;
mx = median(X,1,'omitnan');
end
Matt J
2024 年 9 月 23 日
編集済み: Matt J
2024 年 9 月 24 日
x = rand(1,6)
k = [2,3,3,5,3,2];
n=numel(x);
J=repelem(1:n,k);
I0=1:numel(J);
splitMean=@(vals,G) (accumarray(G(:),vals(:))./accumarray(G(:),ones(numel(vals),1)))';
cc=repelem( round(splitMean( I0,J )) ,k);
zz=min(max(I0-cc+J+1,1),n+2);
vals=[nan,x,nan];
vals=vals(zz);
I=I0-repelem( find(diff([0,J]))-1 ,k);
X=accumarray([I(:),J(:)], vals(:), [max(k),n],[],nan);
M = median(X,1,'omitnan')
Matt J
2024 年 9 月 24 日
編集済み: Matt J
2024 年 9 月 24 日
Anyway, I will be very happy for any hint how to apply robust median filter on my use case, where separate parts of signal shoud be filtered with different filter windows (something like weighting).
If your movmedian windows are simply varying over a small sequence of consecutive intervals, then the code below shows a little bit of speed-up. It won't give the exact same output near the break points between intervals, but it should be fairly close.
x = rand(1,1e5);
k = 8000*ones(1,1e5);
k(20000:30000) =50;
k(18000:20000) =200;
k(30000:32000) =200;
timeit(@() winmedianMichal(x,k))
timeit(@() winmedianMatt(x,k))
function M = winmedianMichal(x,k)
if length(k) ~= length(x)
error('Incomaptible input data')
end
M = zeros(size(x));
[uk,~,ck] = unique(k);
for i = 1:length(uk)
M_i = movmedian(x,uk(i));
I_i = (ck == i);
M(I_i) = M_i(I_i);
end
end
%Requires download of groupConsec
%https://www.mathworks.com/matlabcentral/fileexchange/78008-tools-for-processing-consecutive-repetitions-in-vectors
function M = winmedianMatt(x,k)
M=splitapply(@(a,b){movmedian(a,b(1))}, x,k, groupConsec(k));
M=[M{:}];
end
5 件のコメント
Bruno Luong
2024 年 9 月 25 日
Done; somehow this Answers forum and firefox have issue when I edit it, must use another browser.
参考
カテゴリ
Help Center および File Exchange で Digital Filtering についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!