Rearrange elements of matrix based on an index matrix

1 回表示 (過去 30 日間)
Hossein Kazemi
Hossein Kazemi 2024 年 8 月 27 日
コメント済み: Hossein Kazemi 2024 年 8 月 27 日
I have a 5x3 matrix and I want to rearrange each row according to the correponding row of a 5x3 index matrix
x=randn(5,3)
x = 5x3
-0.2616 0.3522 -0.4451 -1.1699 0.8921 1.7676 1.4354 1.1977 -0.3197 -1.2002 0.9392 0.7452 -0.8374 -1.3827 0.2679
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
z=randn(5,3)
z = 5x3
-0.1687 0.4662 1.3644 0.1290 -3.2728 -0.8944 -0.7820 0.2506 -1.0295 0.0976 -0.0797 -0.2671 0.2607 -0.0966 -0.1679
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[~,I]=sort(x,2)
I = 5x3
3 1 2 1 2 3 3 2 1 1 3 2 2 1 3
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Now I want to sort rows of z using the index matrix I. But using the following does not work. For example, I want the first row of zz to be sorted according to the first row of x, which should result in zz(1,:)= [1.3644, -0.1687, 0.4662].
zz=z(I)
zz = 5x3
-0.7820 -0.1687 0.1290 -0.1687 0.1290 -0.7820 -0.7820 0.1290 -0.1687 -0.1687 -0.7820 0.1290 0.1290 -0.1687 -0.7820
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>

採用された回答

Stephen23
Stephen23 2024 年 8 月 27 日
編集済み: Stephen23 2024 年 8 月 27 日
Yes, it is awkward.
x=randn(5,3)
x = 5x3
0.9687 -0.7929 2.0516 -0.1236 0.2917 -0.9487 -1.4717 0.0275 1.1722 0.2800 1.5357 0.2596 -0.9693 -0.1854 0.3145
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
z=randn(5,3)
z = 5x3
-1.6696 0.6182 -1.4586 0.1528 1.6729 1.4683 0.3576 -1.0089 0.8616 2.1993 0.6213 -1.2327 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
[~,I] = sort(x,2)
I = 5x3
2 1 3 3 1 2 1 2 3 3 1 2 1 2 3
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Perhaps
S = size(I);
[R,~] = ndgrid(1:S(1),1:S(2));
J = sub2ind(S,R,I);
zz = z(J)
zz = 5x3
0.6182 -1.6696 -1.4586 1.4683 0.1528 1.6729 0.3576 -1.0089 0.8616 -1.2327 2.1993 0.6213 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Or
zz = z;
for k = 1:size(I,1)
zz(k,:) = zz(k,I(k,:));
end
zz
zz = 5x3
0.6182 -1.6696 -1.4586 1.4683 0.1528 1.6729 0.3576 -1.0089 0.8616 -1.2327 2.1993 0.6213 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
Or
zz = cell2mat(cellfun(@(v,x)v(x),num2cell(z,2),num2cell(I,2),'uni',0))
zz = 5x3
0.6182 -1.6696 -1.4586 1.4683 0.1528 1.6729 0.3576 -1.0089 0.8616 -1.2327 2.1993 0.6213 -0.3246 -0.8133 1.0463
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
  1 件のコメント
Hossein Kazemi
Hossein Kazemi 2024 年 8 月 27 日
Thanks. The first solution appears to be the fastest (my matrix is 3400x67).

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeOperating on Diagonal Matrices についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by