How to speed up convolution with a million data points

8 ビュー (過去 30 日間)
Runzi Hao
Runzi Hao 2024 年 5 月 3 日
編集済み: Runzi Hao 2024 年 5 月 6 日
I am currently doing convolution using nested for loops, for 10^6 data points in each for loop. Are there ways to speed up the following code? Thanks in advance!
% nIters = 40;
% n = 1e6;
% mzL = rand(nIters, n);
% gg = rand(1, n);
mzR_temp = zeros(nIters, 1);
for c = 1:n
mzR_temp(:) = 0;
for d = 1:c
mzR_temp(:) = mzR_temp(:) + gg(c-d+1) * mzL(:,d);
end
mzR_II(:,c) = mzR_temp;
end

採用された回答

Matt J
Matt J 2024 年 5 月 3 日
編集済み: Matt J 2024 年 5 月 3 日
Use conv,
mzR_II=conv(gg,mzL,'same');
or FFTs,
mzR_II=ifft( fft(gg,2*n) .* fft(mzL,2*n) , 'symmetric');
mzR_II=mzR_II(1:n);
  4 件のコメント
Matt J
Matt J 2024 年 5 月 3 日
編集済み: Matt J 2024 年 5 月 3 日
There is absolutely no way the computation should take more than 1 second on any computer made within the last 10 years.
n=1e6;
mzL = rand(1,n);
gg = rand(1,n-1);
tic
mzR_II = [0 fftfilt(mzL,gg)];
toc
Elapsed time is 0.174552 seconds.
tic;
mzR_II=ifft( fft(gg,2*n) .* fft(mzL,2*n) , 'symmetric');
mzR_II=mzR_II(1:n);
toc
Elapsed time is 0.145911 seconds.
Runzi Hao
Runzi Hao 2024 年 5 月 6 日
Awesome! Thanks for the suggestion of using fftfilt.
It turns out that, on my computer, the convolution ran 43 s for a million data points; and with 40 iterations, the total time was 2600+ s. However, the fftfilt function ran only 8 s for the 40 million data points!

サインインしてコメントする。

その他の回答 (1 件)

Image Analyst
Image Analyst 2024 年 5 月 3 日
Use the built-in convolutions functions: conv and conv2. They are highly optimized for speed.

カテゴリ

Help Center および File ExchangeCorrelation and Convolution についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by