Why fft don't find oscillations ?
2 ビュー (過去 30 日間)
古いコメントを表示
I'm trying to find an FTT of an oscillatory data. In the first figure, you can observed an isolated white region. In this region I expect to see an oscillation instead I am seeing no oscillation. I set a threshold to determine whether there is oscillation or not. But even when I adjusted the threshold, the code can't still find the oscillation the isolated white region. I tried to explore by plotting the data around the isolated white region (i.e. in fig 3). You can see there is a bit oscillation around the white region. Please does one knows what might be the problem. I didn't use HANN widow because, it can't figure out what it does.
active_flow = load('sol_active_flow_varying_xiL.mat');
data1 = load('X1'); data2 = load('Y1')
% values xarray and yarray
x =active_flow.xvals;
y =active_flow.yvals;
% activity values and line at in the HAN region
xival=active_flow.xivals;
lval =active_flow.Lvals;
% extract parameters
paras = active_flow.pars;
% line in the HAN region
l = paras.L;
% width of the rectangle
w =paras.W;
% height of the rectangle
d = paras.D;
% extract dependent variables theta
theta = active_flow.thetaxmym;
X1 = data1.X1;
Y1 = data2.Y1;
% HAN region: using the mesh grid
HAN = (X1 >= -l/2 & X1 <= l/2);
% Index position of -l/2 and l/2
lstop=find(HAN(1,:),1,'last');
% x arrays in the right planar region
xplanarright = x(lstop:end);
%% Sampling Frequency
% Sampling frequency left HAN planar
Fsplanarright = 1/(xplanarright(2)-xplanarright(1));
% Length of x left planar region
Lplanarright = length(xplanarright);
%% PLOTTING
%% Compute the fftshift
for ixi=1:length(xival)
for il=1:length(lval)
% fftshift of theta
thetafftplanarright(:, ixi,il) = abs(fftshift(fft(theta(lstop:end,ixi, il))));
% shift the frequencies
Fshiftplanarright=(-Lplanarright/2:Lplanarright/2-1)*(Fsplanarright/Lplanarright);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Calculate the Peaks and Frequencies
Iplanarright = 1:numel(xplanarright);
for k1 = 1:size(thetafftplanarright,2) % this get the xi values
for k2 = 1:size(thetafftplanarright, 3) % this get the l values
% planar right region
[peak_magplanarright, frequenciesplanarright] = findpeaks(thetafftplanarright(Iplanarright,k1,k2), Fshiftplanarright);
[ifreqplanarright]=find(peak_magplanarright==max(peak_magplanarright));
freq_maxpeakplanarright(k1,k2)=frequenciesplanarright(ifreqplanarright(1));
mag_maxpeakplanarright(k1,k2)= peak_magplanarright(ifreqplanarright(1));
end
end
%% DETERMINE OSCILLATION FOR ENTIRE REGION
% Define threshold for oscillation detection
threshold_freq = 3e5;
threshold_mag = 4.7;
% Planar right
osc_xivalplanarright = [];
osc_lvalplanarright = [];
non_osc_xivalplanarright = [];
non_osc_lvalplanarright = [];
%% Planar right: Iterate over each frequency peak
for k1 = 1:size(freq_maxpeakplanarright, 1)
for k2 = 1:size(freq_maxpeakplanarright, 2)
peak_freqplanarright = freq_maxpeakplanarright(k1, k2);
peak_magplanarright = mag_maxpeakplanarright(k1,k2);
% Check if peak frequency exceeds threshold
if abs(peak_freqplanarright) > threshold_freq && abs(peak_magplanarright)>threshold_mag
osc_xivalplanarright(end+1) = xival(k1);
osc_lvalplanarright(end+1) = lval(k2);
else
non_osc_xivalplanarright(end+1) = xival(k1);
non_osc_lvalplanarright(end+1) = lval(k2);
end
end
end
%% Plotting
[C,h1] = contourf(lval,xival,freq_maxpeakplanarright, 'ShowText','off','edgecolor','none');
c.TickLabelInterpreter='latex';
c.Label.String = 'frequency';
c.Label.Interpreter = 'latex';
colormap bone
clabel(C,h1)
set(gca,'clim',[min(min(freq_maxpeakplanarright)) max(max(freq_maxpeakplanarright))]);
hold on
% plot xival and lval for oscillation and non_oscillation
for i=1:length(non_osc_lvalplanarright)
p4a = plot(non_osc_lvalplanarright(i), non_osc_xivalplanarright(i), 'c.', 'LineWidth', 2, 'MarkerSize', 10);
end
for i=1:length(osc_lvalplanarright)
p4b = plot(osc_lvalplanarright(i), osc_xivalplanarright(i), 'r.', 'LineWidth', 2, 'MarkerSize', 10);
end
% fft and the function around the isolated region
fig11 = figure(11);
nxi = linspace(xival(3), xival(12),10);
for ixi = 1:length(nxi)
subplot(5, 2, ixi);
plot(Fshiftplanarright, thetafftplanarright(:, ixi, 13), 'LineWidth',1)
xlabel('frequency','Interpreter','latex')
ylabel('magnitude','Interpreter','latex');
xlim([min(Fshiftplanarright) max(Fshiftplanarright)])
title(['$\xi$ =', num2str(nxi(ixi)), '$, l$ = ', num2str(lval(13))], 'Interpreter','latex');
end
fig12 = figure(12);
for ixi = 1:length(nxi)
subplot(5, 2, ixi);
plot(xplanarright, squeeze(theta(lstop:end, ixi, 13)))
xlabel('$x$','Interpreter','latex')
ylabel('tilt angle, $\theta$','Interpreter','latex');
xlim([min(xplanarright) max(xplanarright)])
title(['$\xi$ =', num2str(nxi(ixi)), '$, l$ = ', num2str(lval(13))], 'Interpreter','latex');
end
5 件のコメント
Matt J
2024 年 3 月 19 日
I don't think anybody understands what your many variables and plots mean. But it's a frequency plot, so there shouldn't be oscillation. The Fourier transform of an oscillatory signal is a peak.
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Spectral Measurements についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!