Unable to find explicit solution in Lagrangian optimization
2 ビュー (過去 30 日間)
古いコメントを表示
I am trying to find the analytical solution to the following problem:
I tried solving it by coding the Lagrangian by hand and use solve, but Matlab prints the warning: "Unable to find explicit solution".
I used the following code:
syms e1 e2 p1 p2 rho gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)^(1/rho)
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E)
L_e1 = diff(L,e1) == 0
L_e2 = diff(L,e2) == 0
L_lambda = diff(L,lambda) == 0
system = [L_e1,L_e2,L_lambda]
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Do you know what I could do to solve this? Or is there a different and better way to find an analytical solution?
1 件のコメント
採用された回答
Catalytic
2024 年 2 月 11 日
編集済み: Catalytic
2024 年 2 月 11 日
An analytical solution for 0<rho<1 is -
A=[1 0;
0 1;
-1 0;
0 -1]*E;
[fval,i]=min(A*[p1;p2]);
e1=A(i,1);
e2=A(i,2);
2 件のコメント
Catalytic
2024 年 2 月 11 日
編集済み: Catalytic
2024 年 2 月 11 日
You can see this graphically by plotting the constrained region. The region always has extreme points at (), so that's where the optimum must lie.
E=1;
for rho=[0.1:0.2:0.9]
fimplicit(@(e1,e2) abs(e1).^rho + abs(e2).^rho - E.^rho, [-1.5,1.5]); hold on
end
Matt J
2024 年 2 月 11 日
I like it. And, in fact, because the extreme points lie at points where H(e1,e2) is not differentiable, it shows that you will never find the true solution with Lagrange multiplier analysis.
その他の回答 (1 件)
Matt J
2024 年 2 月 11 日
If you make rho explicit, it seems to be able to find solutions. I doubt there would be a closed-form solution for general rho.
rho=2;
syms e1 e2 p1 p2 gamma lambda
syms E H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho)
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-E^rho)
L_e1 = diff(L,e1) == 0
L_e2 = diff(L,e2) == 0
L_lambda = diff(L,lambda) == 0
system = [L_e1,L_e2,L_lambda]
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
4 件のコメント
Matt J
2024 年 2 月 11 日
Even when it can be explicitly solved, the result isn't nice:
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda])
Walter Roberson
2024 年 2 月 11 日
You can eliminate the root() constructs, but the result is confusing.
rho=sym(1/4);
syms e1 e2 p1 p2 gamma lambda
syms H(e1,e2)
H(e1,e2) = (e1^rho +e2^rho);
L(e1, e2, lambda) = p1*e1 +p2*e2 + lambda*(H(e1,e2)-1);
L_e1 = diff(L,e1) == 0;
L_e2 = diff(L,e2) == 0;
L_lambda = diff(L,lambda) == 0;
system = [L_e1,L_e2,L_lambda];
[e1_s,e2_s,lambda_s]=solve(system,[e1 e2 lambda], 'maxdegree', 3)
参考
カテゴリ
Help Center および File Exchange で Symbolic Math Toolbox についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!