Unable to perform assignment because the left and right sides have a different number of elements.
3 ビュー (過去 30 日間)
古いコメントを表示
I am trying to run this code but always get this error
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b Msol positive
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
b_num = linspace(0.001,8,NN2);
for u = 1:numel(b_num)
Msol(u) = vpa(solve(subs(num,b,b_num(u))));
end
However when the vector b_num starts from 0.008, the code works. Is there a way I can include the values of b_num less than 0.008? Many thanks!
0 件のコメント
採用された回答
Torsten
2024 年 2 月 9 日
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b Msol positive
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
b_num = linspace(0.001,8,NN2);
Msol = nan(size(b_num));
for u = 1:numel(b_num)
sol = vpa(solve(subs(num,b,b_num(u))));
if ~isempty(sol)
Msol(u) = sol;
end
end
3 件のコメント
Torsten
2024 年 2 月 9 日
編集済み: Torsten
2024 年 2 月 9 日
What is the old one ? I thought it did not work.
If you want a fast solution, you must use the numerical function "roots" to solve for the roots of your polynomial in M of degree 7 instead of the symbolic "solve".
If your equation has more than one positive solution for M given b, I took the first one.
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
eta=0.05;
sigma=5;
zeta=0.05;
omega0=0.001;
NN1=5000;
NN2=5000;
TT=linspace(0.01,350,NN1);
syms M b
Nut(M) = mu+(rho*M/(1+M)); % N(M)
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M))); % r(M)
lam(M) = 1/(1+Nut(M)); % λ(Μ)
P(M) = epsilon*M/(1+M);
dNut(M) = diff(Nut(M),M); % Ν'(Μ)
dgro(M) = diff(gro(M),M); % r'(M)
dlam(M) = diff(lam(M),M); % λ'(M)
dP(M) = diff(P(M),M); % P'(M)
eqn = (q/b)*gro(M)*(eta+P(M))*(1+Nut(M))*(1-(((alpha*sigma*q*(eta+P(M))*(1+Nut(M))+b*(q+alpha)*(zeta*M-omega0)))/(b*alpha*sigma*K)))-(q/sigma)*(zeta*M-omega0)==0;
[num,den]=numden(lhs(eqn));
p = fliplr(coeffs(num,M));
p = matlabFunction(p);
b_num = linspace(0.001,8,NN2);
Msol = nan(size(b_num));
for u = 1:numel(b_num)
sol = roots(p(b_num(u)));
sol = sol(real(sol)>0 & abs(imag(sol)) < 1e-8);
if ~isempty(sol)
Msol(u) = sol(1);
end
end
plot(b_num,Msol)
grid on
その他の回答 (1 件)
Matt J
2024 年 2 月 9 日
編集済み: Matt J
2024 年 2 月 9 日
Your code assumes that solve() will always return one and only one solution. There is no reason to think that will always be the case (see below). So, the question becomes, what do you want to do when situations like in the examples below arise?
syms x real
vpa(solve(x^2==1))
vpa(solve(x^2==-1))
参考
カテゴリ
Help Center および File Exchange で Particle & Nuclear Physics についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!