Layers argument must be an array of layers or a layer graph.
1 回表示 (過去 30 日間)
古いコメントを表示
XTrain = xlsread('R1_all_data.xlsx',1,'A1:G3788')';
YTrain = xlsread('R1_all_data.xlsx',1, 'H1:H3788')';
XTest = xlsread('R2_all_data.xlsx',1, 'A1:G3788')';
YTest = xlsread('R2_all_data.xlsx',1, 'H1:H3788')';
inputSize = 3788;
numResponses = 1;
numHiddenUnits = 5000;
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer };
opts = trainingOptions('adam', 'MaxEpochs', 1000, 'GradientThreshold', 0.01, 'InitialLearnRate',0.0001);
net = trainNetwork(XTrain,YTrain,layers,opts);
YPred1=predict(net,XTest)
1 件のコメント
回答 (1 件)
Krishna
2024 年 2 月 10 日
Hello PRAMOD,
It appears that the issue you're encountering stems from an improper initialization of the layers object. The mistake was made by using curly braces {} to initialize:
layers = { sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer }
Instead, you should initialize using square brackets [] like this:
layers = [ sequenceInputLayer(inputSize)
lstmLayer(numHiddenUnits)
fullyConnectedLayer(numResponses)
regressionLayer ]
I hope this correction resolves your problem.
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Image Data Workflows についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!