Derive function handle with a vector input argument

3 ビュー (過去 30 日間)
Majeed
Majeed 2024 年 1 月 11 日
コメント済み: Majeed 2024 年 1 月 12 日
when I run this piece of code
q=[3 2 2 3];
f=@(p,x,y) p(1)*x.^2+p(2).*y.^2+p(3)*x.*y+p(4);
syms 'x'
df=diff(f,x);
dfdx=matlabFunction(df);
A=feval(f,q,2,2);
I get an error says
Index exceeds the number of array elements (1).
What I am trying to do is to cluster my equation coefficients into one vector to make my code compact. In my real application I have 15 coefficients. Any advice if this process is possible?

採用された回答

Walter Roberson
Walter Roberson 2024 年 1 月 11 日
移動済み: Walter Roberson 2024 年 1 月 11 日
q=[3 2 2 3];
f=@(p,x,y) p(1)*x.^2+p(2).*y.^2+p(3)*x.*y+p(4);
syms p [1 4]
syms x y
df=diff(f(p,x,y),x)
df = 
dfdx = matlabFunction(df, 'vars', {p, x, y})
dfdx = function_handle with value:
@(in1,x,y)in1(:,1).*x.*2.0+in1(:,3).*y
A = feval(f,q,2,2)
A = 31
  1 件のコメント
Majeed
Majeed 2024 年 1 月 12 日
Thank you very much!

サインインしてコメントする。

その他の回答 (2 件)

Paul
Paul 2024 年 1 月 11 日
編集済み: Paul 2024 年 1 月 11 日
Hi Majeed,
Maybe you're looking for something like this?
q = [3 2 2 3];
p = sym('p',[1 4]);
syms x y
f = p(1)*x.^2+p(2).*y.^2+p(3)*x.*y+p(4)
f = 
df=diff(f,x)
df = 
A = subs(f,[p x y],[q,2,2])
A = 
31

Matt J
Matt J 2024 年 1 月 11 日
編集済み: Matt J 2024 年 1 月 11 日
If you have the Deep Learning Toolbox, you can do automatic differentiation of vector-valued dlarrays,
p=1:15;
x0=dlarray(rand(size(p)));
[fx,gradfx] = dlfeval(@(x) somefunc(x,p),x0)
fx =
1×1 dlarray 68.8215
gradfx =
1×15 dlarray 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
function [y,dydx]=somefunc(x,p)
y=p*x';
dydx=dlgradient(y,x);
end

カテゴリ

Help Center および File ExchangeAssumptions についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by