Error Network: Missing output layer

17 ビュー (過去 30 日間)
Fernando Bonilla Hidrobo
Fernando Bonilla Hidrobo 2023 年 12 月 27 日
編集済み: Matt J 2023 年 12 月 29 日
I am creating an autoencoder where I want to use the Alexnet network for the encoder part (removing the last layers), and when I try to train the autoencoder, I get the error:
"Error using trainNetwork
Invalid network.
Caused by:
Network: Missing output layer. The network must have at least one output layer.
Layer 'output': Unconnected output. Each layer output must be connected to the input of another layer."
However, I do see the output layer of the decoder connected when I visualize the network graph before training.
Please, your help on how to solve the problem. Thank you.
  3 件のコメント
Fernando Bonilla Hidrobo
Fernando Bonilla Hidrobo 2023 年 12 月 28 日
Hi @Debraj Maji, this is the code of the autoencoder I am creating
alexNet = alexnet;
lgraph = layerGraph(alexNet.Layers(1:end-3)); % Remove the last three layers
bottleneckLayer = fullyConnectedLayer(256, 'Name', 'bottleneck');
lgraph2 = addLayers(lgraph, bottleneckLayer);
% Get the name of the last layer of the modified encoder
lastEncoderLayer = lgraph.Layers(end).Name;
lgraph2 = connectLayers(lgraph2, lastEncoderLayer, 'bottleneck');
classInput = imageInputLayer([1, 1, 4], 'Name', 'classInput', 'Normalization', 'none');
concatLayer = concatenationLayer(3, 2, 'Name', 'concat');
lgraph3 = addLayers(lgraph2, concatLayer);
lgraph4 = connectLayers(lgraph3, 'bottleneck', 'concat/in1');
lgraph5 = addLayers(lgraph4, classInput);
lgraph6 = connectLayers(lgraph5, 'classInput', 'concat/in2');
analyzeNetwork(lgraph8);
%% decoder
outputImageSize = [227, 227, 3];% (width x height x channels)
decoderLayers = [
transposedConv2dLayer(3, 64, 'Stride', 2, 'Cropping', 'same', 'Name', 'decoder_conv1')
reluLayer('Name', 'decoder_relu1')
transposedConv2dLayer(3, outputImageSize(3), 'Stride', 2, 'Cropping', 'same', 'Name', 'decoder_conv2')
];
outputLayer = convolution2dLayer(1, outputImageSize(3), 'Name', 'output');
lgraph7 = addLayers(lgraph6, decoderLayers);
lgraph8 = connectLayers(lgraph7, 'concat', 'decoder_conv1');
lgraph8 = addLayers(lgraph8, outputLayer);
lgraph8 = connectLayers(lgraph8, 'decoder_conv2', 'output');
analyzeNetwork(lgraph8);
%% Image Loading
datafolder = 'C:\Users\ferna\Desktop\U\10TH SEMESTER\MIC\IMAGES\FFT_2048\bicubic';
imds = imageDatastore(datafolder, 'IncludeSubfolders', true, 'LabelSource', 'foldernames');
[trainingData, validationData] = splitEachLabel(imds, 0.8, 'randomized');
options = trainingOptions('adam', ...
'MaxEpochs', 20, ...
'InitialLearnRate', 0.0001, ...
'ValidationData', validationData, ...
'Plots', 'training-progress');
autoencoder = trainNetwork(trainingData, lgraph8, options);
Cris LaPierre
Cris LaPierre 2023 年 12 月 28 日
移動済み: Matt J 2023 年 12 月 28 日
What do you want the output of your network to be? The output options can be viewed here:

サインインしてコメントする。

回答 (1 件)

Matt J
Matt J 2023 年 12 月 28 日
編集済み: Matt J 2023 年 12 月 29 日
The "output layer" referred to by the error message doesn't refer to the final decoder in the network. An output layer is a specific type of layers that implements a loss function for the purpose of training,
You must have one of these as the final layer in your network, so that trainNetwork knows what loss function to use.

カテゴリ

Help Center および File ExchangeDeep Learning Toolbox についてさらに検索

製品


リリース

R2023b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by