現在この質問をフォロー中です
- フォローしているコンテンツ フィードに更新が表示されます。
- コミュニケーション基本設定に応じて電子メールを受け取ることができます。
Errors in using null command due to truncation error
3 ビュー (過去 30 日間)
古いコメントを表示
Hi,
I'm trying to find eigenvectors of a 9-by-9 square matrix, corresponding to its eigenvalues. The matrix consists of components with complex numbers and one symbolic 'a', so I found nine eigenvalues ('a'), via solving the determinant of the matrix. For some eigenvalues, I used the 'vpa' command since, without 'vpa', they are obtained as a form of 'root(eqn, z, integer)'. Here the issue seems to arise. Due to the truncation error, the 'null' shows empty eigenvectors corresponding to the eigenvalues. FYI, I don't know how to assign a specific variable in 'eig' and it takes forever to run. Is there a breakthrough other than Gauss elimination method with suppressing close-to-zero values?
clc;
close all;
clear;
syms a
R = 0.5234;
r = 0.0054;
s = 0.0084;
for p = 1:3
M = [a*R*r 1i*r 0 0 0 0 a*R*8.78+1i*(8.78-p*R) 0 0;
0 0 a*R*s 1i*s 0 0 0 a*R*79.88+1i*(79.88-p*R) 0;
0 0 0 0 a*R*0.4542 1i*0.4542 -(a*R*291.06+1i*(291.06+p*R)) -(a*R*291.06+1i*(291.06+p*R)) 0;
a*R*8.78+1i*(8.78-p*R) 0 0 0 0 0 0 0 a*R;
0 a*R*8.78+1i*(8.78-p*R) 0 0 0 0 0 0 1i;
0 0 a*R*79.88+1i*(79.88-p*R) 0 0 0 0 0 a*R;
0 0 0 a*R*79.88+1i*(79.88-p*R) 0 0 0 0 1i;
0 0 0 0 a*R*291.06+1i*(291.06+p*R) 0 0 0 a*R;
0 0 0 0 0 a*R*291.06+1i*(291.06+p*R) 0 0 1i];
Det = det(M);
DetEqn = Det == 0;
EigenVal1 = solve(DetEqn,a);
EigVal = vpa(EigenVal1);
for j=1:rank(M)
M_temp = subs(M,a,EigVal(j));
EigVec(:,j) = null(M_temp)
end
end
Unable to perform assignment because the indices on the left side are not compatible with the size of the right side.
Error in sym/privsubsasgn (line 1168)
L_tilde2 = builtin('subsasgn',L_tilde,struct('type','()','subs',{varargin}),R_tilde);
Error in indexing (line 999)
C = privsubsasgn(L,R,inds{:});
回答 (1 件)
Walter Roberson
2023 年 8 月 17 日
Your code assumes that the null space is the same size each time, but most of the time the null space is empty. You cannot store an empty vector into a definite vector location.
You need to decide what you want to do when the null space is empty.
6 件のコメント
Walter Roberson
2023 年 8 月 17 日
syms a
R = 0.5234;
r = 0.0054;
s = 0.0084;
for p = 1:3
M = [a*R*r 1i*r 0 0 0 0 a*R*8.78+1i*(8.78-p*R) 0 0;
0 0 a*R*s 1i*s 0 0 0 a*R*79.88+1i*(79.88-p*R) 0;
0 0 0 0 a*R*0.4542 1i*0.4542 -(a*R*291.06+1i*(291.06+p*R)) -(a*R*291.06+1i*(291.06+p*R)) 0;
a*R*8.78+1i*(8.78-p*R) 0 0 0 0 0 0 0 a*R;
0 a*R*8.78+1i*(8.78-p*R) 0 0 0 0 0 0 1i;
0 0 a*R*79.88+1i*(79.88-p*R) 0 0 0 0 0 a*R;
0 0 0 a*R*79.88+1i*(79.88-p*R) 0 0 0 0 1i;
0 0 0 0 a*R*291.06+1i*(291.06+p*R) 0 0 0 a*R;
0 0 0 0 0 a*R*291.06+1i*(291.06+p*R) 0 0 1i];
Det = det(M);
DetEqn = Det == 0;
EigenVal1 = solve(DetEqn,a);
EigVal = (EigenVal1);
for j=1:rank(M)
M_temp = subs(M,a,EigVal(j));
EV = null(M_temp);
if isempty(EV)
EigVec(:,j,p) = sym(NaN(size(EV,1),1));
else
EigVec(:,j,p) = EV;
end
end
end
format long g
EigVec = double(EigVec)
EigVec =
EigVec(:,:,1) =
Columns 1 through 3
-0.0604434080666857 - 0.0568402099138265i -0.0604434080666857 + 0.0568402099138265i 0 + 0i
-0.0568402099138265 + 0.0604434080666857i -0.0568402099138265 - 0.0604434080666857i 0 + 0i
-0.00630053702136478 - 0.00625925383312013i -0.00630053702136478 + 0.00625925383312013i 0 + 0i
-0.00625925383312013 + 0.00630053702136478i -0.00625925383312013 - 0.00630053702136478i 0 + 0i
-0.00171477249055503 - 0.00171785608816912i -0.00171477249055503 + 0.00171785608816912i 0.998204973259795 + 0i
-0.00171785608816912 + 0.00171477249055503i -0.00171785608816912 - 0.00171477249055503i 1 + 0i
0 + 0i 0 + 0i 0 + 0i
0 + 0i 0 + 0i 0 + 0i
1 + 0i 1 + 0i 0 + 0i
Columns 4 through 6
0 + 0i 1.06339171087373 + 0i NaN + 0i
0 + 0i 1 + 0i NaN + 0i
1.00659554466799 + 0i 0 + 0i NaN + 0i
1 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
Columns 7 through 9
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
EigVec(:,:,2) =
Columns 1 through 3
-0.0641387232677706 - 0.0564917511132487i -0.0641387232677706 + 0.0564917511132487i 0 + 0i
-0.0564917511132487 + 0.0641387232677706i -0.0564917511132487 - 0.0641387232677706i 0 + 0i
-0.00634195365255762 - 0.00625884452532305i -0.00634195365255762 + 0.00625884452532305i 0 + 0i
-0.00625884452532305 + 0.00634195365255762i -0.00625884452532305 - 0.00634195365255762i 0 + 0i
-0.00171169167540565 - 0.00171784779045346i -0.00171169167540565 + 0.00171784779045346i 0.996416379214725 + 0i
-0.00171784779045346 + 0.00171169167540565i -0.00171784779045346 - 0.00171169167540565i 1 + 0i
0 + 0i 0 + 0i 0 + 0i
0 + 0i 0 + 0i 0 + 0i
1 + 0i 1 + 0i 0 + 0i
Columns 4 through 6
0 + 0i 1.13536440283453 + 0i NaN + 0i
0 + 0i 1 + 0i NaN + 0i
1.0132786693931 + 0i 0 + 0i NaN + 0i
1 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
Columns 7 through 9
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
EigVec(:,:,3) =
Columns 1 through 3
-0.0680253050205014 - 0.0558597772365388i -0.0680253050205014 + 0.0558597772365388i 0 + 0i
-0.0558597772365388 + 0.0680253050205014i -0.0558597772365388 - 0.0680253050205014i 0 + 0i
-0.00638363887049742 - 0.00625815577392186i -0.00638363887049742 + 0.00625815577392186i 0 + 0i
-0.00625815577392186 + 0.00638363887049742i -0.00625815577392186 - 0.00638363887049742i 0 + 0i
-0.0017086164151074 - 0.00171783399737567i -0.0017086164151074 + 0.00171783399737567i 0.99463418334813 + 0i
-0.00171783399737567 + 0.0017086164151074i -0.00171783399737567 - 0.0017086164151074i 1 + 0i
0 + 0i 0 + 0i 0 + 0i
0 + 0i 0 + 0i 0 + 0i
1 + 0i 1 + 0i 0 + 0i
Columns 4 through 6
0 + 0i 1.21778690116231 + 0i NaN + 0i
0 + 0i 1 + 0i NaN + 0i
1.02005113025445 + 0i 0 + 0i NaN + 0i
1 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
0 + 0i 0 + 0i NaN + 0i
Columns 7 through 9
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
NaN + 0i NaN + 0i NaN + 0i
Walter Roberson
2023 年 8 月 17 日
Note that in this above code, the null() calculation is working on the symbolic solutions, so there is no truncation error going on.
Seung Hyeop Hyun
2023 年 8 月 18 日
Walter,
Thank you for leaving your comments. The issue here is that there must be eigenvectors corresponding to the eigenvalues, which can be obtained from the 'null', and also the dimension of the eigenvectors is definitely 9x1. The 'null' cannot find the eigenvectors and provides 0X1 empty vectors. I believe that it's because of the approximation due to using 'vpa'. The 'a' is already replaced by one of eigenvalues, and therefore, the null is not working on the symbolic solutions. Alternatively, I can do 'eig' for M after one of eigenvalues is entered.
Torsten
2023 年 8 月 18 日
I don't know why you talk about "eigenvalues", but I agree that if "a" gives det(M(a)) = 0, null(M(a)) should be at least 1-dimensional and not empty.
Walter Roberson
2023 年 8 月 18 日
You did not take into account that you use floating point constants and that some of the calculations take place in floating point instead of as symbolic numbers.
When you use symbolic numbers consistently then the problem does not show up.
Q = @(v) sym(v);
syms a
R = Q(5234)/Q(10)^4;
r = Q(54)/Q(10)^4;
s = Q(84)/Q(10)^4;
n8_78 = Q(878)/Q(10)^2;
n79_88 = Q(7988)/Q(10)^2;
n_4542 = Q(4542)/Q(10)^4;
n291_06 = Q(29106)/Q(10)^2;
for p = 1:3
M = [a*R*r 1i*r 0 0 0 0 a*R*n8_78+1i*(n8_78-p*R) 0 0;
0 0 a*R*s 1i*s 0 0 0 a*R*n79_88+1i*(n79_88-p*R) 0;
0 0 0 0 a*R*n_4542 1i*n_4542 -(a*R*n291_06+1i*(n291_06+p*R)) -(a*R*n291_06+1i*(n291_06+p*R)) 0;
a*R*n8_78+1i*(n8_78-p*R) 0 0 0 0 0 0 0 a*R;
0 a*R*n8_78+1i*(n8_78-p*R) 0 0 0 0 0 0 1i;
0 0 a*R*n79_88+1i*(n79_88-p*R) 0 0 0 0 0 a*R;
0 0 0 a*R*n79_88+1i*(n79_88-p*R) 0 0 0 0 1i;
0 0 0 0 a*R*n291_06+1i*(n291_06+p*R) 0 0 0 a*R;
0 0 0 0 0 a*R*n291_06+1i*(n291_06+p*R) 0 0 1i];
Det = det(M);
DetEqn = Det == 0;
EigenVal1 = solve(DetEqn,a);
EigVal = EigenVal1;
for j=1:rank(M)
M_temp = subs(M,a,EigVal(j));
EV = null(M_temp);
if isempty(EV)
EigVec(:,j,p) = sym(NaN(size(EV,1),1));
else
EigVec(:,j,p) = EV;
end
end
end
EigVec
EigVec(:,:,1) =

EigVec(:,:,2) =

EigVec(:,:,3) =

format long g
EigVec = double(EigVec)
EigVec =
EigVec(:,:,1) =
Columns 1 through 3
-0.0604434080666857 - 0.0568402099138265i -0.0604434080666857 + 0.0568402099138265i 0 + 0i
-0.0568402099138265 + 0.0604434080666857i -0.0568402099138265 - 0.0604434080666857i 0 + 0i
-0.00630053702136478 - 0.00625925383312013i -0.00630053702136478 + 0.00625925383312013i 0 + 0i
-0.00625925383312013 + 0.00630053702136478i -0.00625925383312013 - 0.00630053702136478i 0 + 0i
-0.00171477249055503 - 0.00171785608816912i -0.00171477249055503 + 0.00171785608816912i 0.998204973259795 + 0i
-0.00171785608816912 + 0.00171477249055503i -0.00171785608816912 - 0.00171477249055503i 1 + 0i
0 + 0i 0 + 0i 0 + 0i
0 + 0i 0 + 0i 0 + 0i
1 + 0i 1 + 0i 0 + 0i
Columns 4 through 6
0 + 0i 1.06339171087373 + 0i -2.07917517265388 - 0.12335357734933i
0 + 0i 1 + 0i 2.08986241502569 + 0.131173171659899i
1.00659554466799 + 0i 0 + 0i -1.17431482491886 - 3.23249177899391i
1 + 0i 0 + 0i 1.16945872447306 + 3.25381182291119i
0 + 0i 0 + 0i 0.389692214298109 - 0.187973926292369i
0 + 0i 0 + 0i -0.392422256869245 + 0.187636508068213i
0 + 0i 0 + 0i 0.0467535877540691 + 0.00573056182938062i
0 + 0i 0 + 0i -0.15363302189684 + 0.127699515578846i
0 + 0i 0 + 0i 1 + 0i
Columns 7 through 9
-2.07917517265388 + 0.12335357734933i -1.91125259969198 - 0.520193365405037i -1.91125259969198 + 0.520193365405037i
2.08986241502569 - 0.131173171659899i 1.91129494286941 + 0.553169312823223i 1.91129494286941 - 0.553169312823223i
-1.17431482491886 + 3.23249177899391i -0.105661537118353 - 0.770245234313409i -0.105661537118353 + 0.770245234313409i
1.16945872447306 - 3.25381182291119i 0.0937570861782642 + 0.775325421161631i 0.0937570861782642 - 0.775325421161631i
0.389692214298109 + 0.187973926292369i 0.0716575680173222 - 0.185960430138347i 0.0716575680173222 + 0.185960430138347i
-0.392422256869245 - 0.187636508068213i -0.0749584912828433 + 0.185626626193629i -0.0749584912828433 - 0.185626626193629i
0.0467535877540691 - 0.00573056182938062i 0.0363384221349967 + 0.0221560988269227i 0.0363384221349967 - 0.0221560988269227i
-0.15363302189684 - 0.127699515578846i -0.00986540081559587 + 0.00258850280209401i -0.00986540081559587 - 0.00258850280209401i
1 + 0i 1 + 0i 1 + 0i
EigVec(:,:,2) =
Columns 1 through 3
-0.0641387232677706 - 0.0564917511132487i -0.0641387232677706 + 0.0564917511132487i 0 + 0i
-0.0564917511132487 + 0.0641387232677706i -0.0564917511132487 - 0.0641387232677706i 0 + 0i
-0.00634195365255762 - 0.00625884452532305i -0.00634195365255762 + 0.00625884452532305i 0 + 0i
-0.00625884452532305 + 0.00634195365255762i -0.00625884452532305 - 0.00634195365255762i 0 + 0i
-0.00171169167540565 - 0.00171784779045346i -0.00171169167540565 + 0.00171784779045346i 0.996416379214726 + 0i
-0.00171784779045346 + 0.00171169167540565i -0.00171784779045346 - 0.00171169167540565i 1 + 0i
0 + 0i 0 + 0i 0 + 0i
0 + 0i 0 + 0i 0 + 0i
1 + 0i 1 + 0i 0 + 0i
Columns 4 through 6
0 + 0i 1.13536440283453 + 0i -1.03424396514104 - 0.0577669915193808i
0 + 0i 1 + 0i 1.04493120751284 + 0.0655865858299493i
1.0132786693931 + 0i 0 + 0i -0.589585462682334 - 1.60558586753832i
1 + 0i 0 + 0i 0.58472936223653 + 1.62690591145559i
0 + 0i 0 + 0i 0.193481085863487 - 0.0941556722582628i
0 + 0i 0 + 0i -0.196211128434622 + 0.0938182540341066i
0 + 0i 0 + 0i 0.0116310771845003 + 0.00138540923306503i
0 + 0i 0 + 0i -0.0380957587743605 + 0.0318852196758995i
0 + 0i 0 + 0i 1 + 0i
Columns 7 through 9
-1.03424396514104 + 0.0577669915193808i -0.955605128257274 - 0.243608708993425i -0.955605128257274 + 0.243608708993425i
1.04493120751284 - 0.0655865858299493i 0.955647471434705 + 0.276584656411611i 0.955647471434705 - 0.276584656411611i
-0.589585462682334 + 1.60558586753832i -0.058782994029221 - 0.382582523732593i -0.058782994029221 + 0.382582523732593i
0.58472936223653 - 1.62690591145559i 0.0468785430891321 + 0.387662710580816i 0.0468785430891321 - 0.387662710580816i
0.193481085863487 + 0.0941556722582628i 0.0341783223759006 - 0.0931471170415329i 0.0341783223759006 + 0.0931471170415329i
-0.196211128434622 - 0.0938182540341066i -0.0374792456414217 + 0.0928133130968145i -0.0374792456414217 - 0.0928133130968145i
0.0116310771845003 - 0.00138540923306503i 0.00912923446797742 + 0.00536880051870816i 0.00912923446797742 - 0.00536880051870816i
-0.0380957587743605 - 0.0318852196758995i -0.00244438930219064 + 0.000683128476076533i -0.00244438930219064 - 0.000683128476076533i
1 + 0i 1 + 0i 1 + 0i
EigVec(:,:,3) =
Columns 1 through 3
-0.0680253050205014 - 0.0558597772365388i -0.0680253050205014 + 0.0558597772365388i 0 + 0i
-0.0558597772365388 + 0.0680253050205014i -0.0558597772365388 - 0.0680253050205014i 0 + 0i
-0.00638363887049742 - 0.00625815577392186i -0.00638363887049742 + 0.00625815577392186i 0 + 0i
-0.00625815577392186 + 0.00638363887049742i -0.00625815577392186 - 0.00638363887049742i 0 + 0i
-0.0017086164151074 - 0.00171783399737567i -0.0017086164151074 + 0.00171783399737567i 0.99463418334813 + 0i
-0.00171783399737567 + 0.0017086164151074i -0.00171783399737567 - 0.0017086164151074i 1 + 0i
0 + 0i 0 + 0i 0 + 0i
0 + 0i 0 + 0i 0 + 0i
1 + 0i 1 + 0i 0 + 0i
Columns 4 through 6
0 + 0i 1.21778690116231 + 0i -0.685933562636758 - 0.0359047962427311i
0 + 0i 1 + 0i 0.696620805008562 + 0.0437243905532995i
1.02005113025445 + 0i 0 + 0i -0.394675675270157 - 1.06328389705312i
1 + 0i 0 + 0i 0.389819574824353 + 1.0846039409704i
0 + 0i 0 + 0i 0.12807737638528 - 0.0628829209135606i
0 + 0i 0 + 0i -0.130807418956415 + 0.0625455026894044i
0 + 0i 0 + 0i 0.00514395587663915 + 0.000594946349441334i
0 + 0i 0 + 0i -0.0167933653854523 + 0.0141531959048798i
0 + 0i 0 + 0i 1 + 0i
Columns 7 through 9
-0.685933562636758 + 0.0359047962427311i -0.637055971112372 - 0.151413823522888i -0.637055971112372 + 0.151413823522888i
0.696620805008562 - 0.0437243905532995i 0.637098314289803 + 0.184389770941074i 0.637098314289803 - 0.184389770941074i
-0.394675675270157 + 1.06328389705312i -0.0431568129995103 - 0.253361620205655i -0.0431568129995103 + 0.253361620205655i
0.389819574824353 - 1.0846039409704i 0.0312523620594214 + 0.258441807053877i 0.0312523620594214 - 0.258441807053877i
0.12807737638528 + 0.0628829209135606i 0.0216852404954267 - 0.0622093460092614i 0.0216852404954267 + 0.0622093460092614i
-0.130807418956415 - 0.0625455026894044i -0.0249861637609478 + 0.061875542064543i -0.0249861637609478 - 0.061875542064543i
0.00514395587663915 - 0.000594946349441334i 0.0040759677296243 + 0.00231048172032896i 0.0040759677296243 - 0.00231048172032896i
-0.0167933653854523 - 0.0141531959048798i -0.0010764184837051 + 0.000319388109428762i -0.0010764184837051 - 0.000319388109428762i
1 + 0i 1 + 0i 1 + 0i
参考
カテゴリ
Help Center および File Exchange で Linear Algebra についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!エラーが発生しました
ページに変更が加えられたため、アクションを完了できません。ページを再度読み込み、更新された状態を確認してください。
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom(English)
アジア太平洋地域
- Australia (English)
- India (English)
- New Zealand (English)
- 中国
- 日本Japanese (日本語)
- 한국Korean (한국어)
