Least Squares with constraint on absolute value

4 ビュー (過去 30 日間)
L
L 2023 年 6 月 15 日
コメント済み: L 2023 年 6 月 19 日
Hi , I need to solve a least squares values of the form
, where x is a 32x1 vector and B is a 32x32 matrix.
Howerver, x is complex and I need to constraint the solutions to make each element of vector x to have absolute value of 1.
Is that possible?
Best,

採用された回答

Torsten
Torsten 2023 年 6 月 16 日
編集済み: Torsten 2023 年 6 月 16 日
rng("default")
n = 32;
y = rand(n,1) + 1i*rand(n,1);
B = rand(n) + 1i*rand(n);
x0 = rand(n,1) + 1i*rand(n,1);
x0 = [real(x0);imag(x0)];
x0 = x0./[sqrt(x0(1:n).^2+x0(n+1:2*n).^2);sqrt(x0(1:n).^2+x0(n+1:2*n).^2)];
fun = @(x)(B*(x(1:n)+1i*x(n+1:2*n))-y)'*(B*(x(1:n)+1i*x(n+1:2*n))-y);
fun(x0)
ans = 1.2661e+04
nonlcon = @(x)deal([],x(1:n).^2+x(n+1:2*n).^2-ones(n,1));
sol = fmincon(fun,x0,[],[],[],[],[],[],nonlcon,optimset('MaxFunEvals',10000,'TolFun',1e-12,'TolX',1e-12))
Local minimum possible. Constraints satisfied. fmincon stopped because the size of the current step is less than the value of the step size tolerance and constraints are satisfied to within the value of the constraint tolerance.
sol = 64×1
0.6418 -0.9517 -0.9328 -0.8359 -0.9372 0.4603 0.7496 0.8249 0.9990 -0.2242
fun(sol)
ans = 10.3184
sol(1:n).^2+sol(n+1:2*n).^2-ones(n,1)
ans = 32×1
1.0e-15 * 0 0 -0.2220 0 0 0 0 0 0 0

その他の回答 (1 件)

Matt J
Matt J 2023 年 6 月 15 日
編集済み: Matt J 2023 年 6 月 15 日
You'll need to write the problem in terms of the real-valued components xi and xr of x,
x=xr+1i*xi
Once you do that, your absolute value constraints become quadratic,
xr^2+xi^2=1
and you can solve with fmincon.
  2 件のコメント
L
L 2023 年 6 月 16 日
編集済み: L 2023 年 6 月 16 日
Than
ks for your answer.
Is this correct?
n = @(x) vecnorm( y - B*x);
A = [];
b = [];
Aeq = [];
beq = [];
lb = [];
ub = [];
nonlcon = @unity;
x0 = zeros(32,1);
x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,nonlcon)
function [c,ceq] = unity(x)
c = real(x)^2 + 1*iimg(x)^2 - 1;
ceq = [];
end
Matt J
Matt J 2023 年 6 月 16 日

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeQuadratic Programming and Cone Programming についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by