how can i use struct to "for" when i use predictFcn
3 ビュー (過去 30 日間)
古いコメントを表示
i want to predict by use "for"
i have 15 number of sturct
how can i use "for"..?
for modelname = [Tree Linear InteractionsLinear RobustLinear StepwiseLinear LinearSVM QuadraticSVM CubicSVM FinegaussianSVM MediumGaussianSVM CoarseFaussianSVM RationalQuadraticGPR SquaredExponentialGPR Matern52GPR ExponentialGPR]
var1=data_1(:);
var2=data_2(:);
insertdata=table(var1,var2);
predictdata=modelname.predictFcn(insertdata)
end
this code didn't work..
0 件のコメント
採用された回答
Luca Ferro
2023 年 4 月 5 日
編集済み: Luca Ferro
2023 年 4 月 5 日
You should have all the model names in an array, then loop using a proper index and eval the expression.
modelNames=["Tree", "Linear", "InteractionsLinear", "RobustLinear", "StepwiseLinear", "LinearSVM", "QuadraticSVM", "CubicSVM", "FinegaussianSVM" ,"MediumGaussianSVM","CoarseFaussianSVM","RationalQuadraticGPR" ,"SquaredExponentialGPR" ,"Matern52GPR","ExponentialGPR"];
var2=data_2(:);
insertdata=table(var1,var2);
for nn=1:size(modelNames,2)
predictdata=eval(strcat(modelNames(nn),'.predictFcn(insertdata)'));
end
Probably there is a better way using dynamic field naming for structs but i could not implement it in a short time.
0 件のコメント
その他の回答 (1 件)
Stephen23
2023 年 4 月 5 日
編集済み: Stephen23
2023 年 4 月 5 日
"i have 15 number of sturct"
And that is a problem which is best solved by putting them into one array (which they clearly should have been right from the start). It is best to avoid slow, complex, inefficient, evil EVAL.
For example, assuming that all of those structures are scalar with the same fieldnames:
S = [Tree,Linear,InteractionsLinear,RobustLinear,StepwiseLinear,LinearSVM,QuadraticSVM,CubicSVM,FinegaussianSVM,MediumGaussianSVM,CoarseFaussianSVM,RationalQuadraticGPR,SquaredExponentialGPR,Matern52GPR,ExponentialGPR];
for k = 1:numel(S)
..
S(k).predictFcn(insertdata)
..
end
0 件のコメント
参考
カテゴリ
Help Center および File Exchange で Linear Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!