Minimizing linear equation Ax=b using gradient descent
6 ビュー (過去 30 日間)
古いコメントを表示
I want to find the error in the solution to Ax=b, using gradient descent.
E=||Ax-b||^2
x = [x1;x2], where x1 and x2 range between -5 and 5, with step size 0.2 for each direction.
How do I use Gradient Descent to search for a local minimum with know step size of 0.2, learning rate= 0.1. The search should stop when the difference between previous and current value is 0.002. I am to find solution for x using Gradient Descent, as well error E.
4 件のコメント
Hiro Yoshino
2022 年 12 月 20 日
You need to derive the derivative of the Error function. Gradient Descent requires it to move the point of interest to the next.
採用された回答
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Mathematics and Optimization についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!