negative values kernel density estimation
6 ビュー (過去 30 日間)
古いコメントを表示
I have obtained the monthly temperature distribution using kernel density estimate. And using SVD(Singular Value Decomposition) and regression model, I forecast the monthly temperature distribution. But I found that some estimated kernel density values are negative. How to deal with these negative values?
10 件のコメント
Adam Danz
2022 年 12 月 22 日
> So you mean that I should delete the negative values in z
No, I would take a step back and investigate. Do you expect there to be negative values in z? If not, then how did they get there? Perhaps something went wrong with your calculations of z or perhaps your expectations of what z should be aren't correct expectations. If you do expect there to be negative values in z or that negative values are possible, then I would re-think whether it is a problem that the forecast produces negative values.
If z isn't meaningful data and you're using z to poke around at the model, then it's completely fine to replace the negative values or use an entirely different set of data. But if z is meaningful data, you can't just delete some values because they are causing problems.
I don't know enough about what the data are or about the forecasting you're using to suggest the next steps.
回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Gaussian Process Regression についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!