How can i create n-linearly independent vectors?

4 ビュー (過去 30 日間)
Subham Burnwal
Subham Burnwal 2015 年 3 月 11 日
編集済み: Matt J 2015 年 3 月 11 日
Like 4-linearly independent vectors if n=4 as follows
a1=[1,17] , a2=[1,7] , a3=[1,1] , a4=[1,9]
  1 件のコメント
James Tursa
James Tursa 2015 年 3 月 11 日
編集済み: James Tursa 2015 年 3 月 11 日
The simplest thing to do I suppose is just to pick off the columns of the identity matrix of the appropriate size. Do you have any other criteria that needs to be met?
I should add that your example will not work ... you can't have four linearly independent 2-element vectors, since two linearly independent 2-element vectors will span the entire space.

サインインしてコメントする。

回答 (2 件)

Matt J
Matt J 2015 年 3 月 11 日
編集済み: Matt J 2015 年 3 月 11 日
Generate any n x n nonsingular matrix, e.g.,
A = eye(n)
and take some subset of the columns.

Roger Stafford
Roger Stafford 2015 年 3 月 11 日
You can also use matlab's 'orth' function to generate linearly independent vectors which span a given space. They will in fact be orthogonal. See:
http://www.mathworks.com/help/matlab/ref/orth.html
(Note: You cannot get four linearly independent vectors from your set of two-element vectors. The maximum would be two. For example, in the vectors you give, there is the equality:
3*a1-8*a2+5*a3 = 0

カテゴリ

Help Center および File ExchangeCreating and Concatenating Matrices についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by