What is A/B when A and B are 1x3 row vectors

1 回表示 (過去 30 日間)
Ashish Sheikh
Ashish Sheikh 2015 年 3 月 7 日
編集済み: Matt J 2015 年 3 月 8 日
This is so simple...i think i'm missing some thing
What is the result of A/B ???? (if A and B are same length row vectors)
ex: A=[1 2 3]; B=[4 5 6];
A/B in MAtlab gives me 0.4156

採用された回答

Matt J
Matt J 2015 年 3 月 7 日
編集済み: Matt J 2015 年 3 月 8 日
I want to know how this gives me 0.4156 ??? A/B is A*inv(B) ....
A/B is always defined as the least squares solution to the equation,
A=X*B
or
min. f(X) = norm(A-X*B)
In this case, the solution X has to be a scalar, since that is the matrix shape that can be left multiplied with B to produce another 1x3 matrix A. You can readily confirm that X=0.4156 is the minimizing value by plotting f(X),
>> fplot(@(X)norm(A-X*B),[0.41,.42])

その他の回答 (1 件)

Star Strider
Star Strider 2015 年 3 月 7 日
編集済み: Star Strider 2015 年 3 月 7 日
You’re likely not missing anything other than an slightly more inclusive interpretation of that operation. You’re doing a linear least-squares fit through the origin on ‘A’ as a function of ‘B’.
To illustrate symbolically:
A=[1 2 3]; B=[4 5 6];
P = A/B; % ‘P’ = Parameter ‘Vector’ (1x1 Here)
R = P*B; % Regression Line
figure(1)
plot(B, A, 'p') % Plot Data
hold on
plot(B, R, 'LineWidth',1.5) % Plot Regression
plot([0 4], P*[0 4], '--r') % Extend To Origin
hold off
axis([0 8 0 4])
grid
and to illustrate literally:
  4 件のコメント
Ashish Sheikh
Ashish Sheikh 2015 年 3 月 7 日
編集済み: Ashish Sheikh 2015 年 3 月 7 日
Thanks @Star strider ....Now i got it ,...
Star Strider
Star Strider 2015 年 3 月 7 日
My pleasure!
You can now Accept two answers, if you want to Accept mine as well.

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeMathematics についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by