How to regularize the Levenberg-Marquardt algorithm in lsqnonlin?

7 ビュー (過去 30 日間)
Abhilash Awasthi
Abhilash Awasthi 2022 年 7 月 27 日
編集済み: Matt J 2022 年 7 月 27 日
I need to solve a non-linear least square problem using Levenberg-Marquardt (LM) method but with some additional terms in the objective function (see below)
lsqnonlin function in MATLAB optimization toolbox only takes ( as input and updates the parameters using the normal equations for the least-square problem [1]. Is there any way to solve such problems using lsqnonlin?
[1] Moré, J.J., 1978. The Levenberg-Marquardt algorithm: implementation and theory. In Numerical analysis (pp. 105-116). Springer, Berlin, Heidelberg.

回答 (1 件)

Matt J
Matt J 2022 年 7 月 27 日
編集済み: Matt J 2022 年 7 月 27 日
You can append the square root of the regularization term to the vector . However, your objective function does not look differentiable, which Levenberg-Marquardt assumes, so you might have to use a differentiable approximation to the TV term.
  8 件のコメント
Torsten
Torsten 2022 年 7 月 27 日
編集済み: Torsten 2022 年 7 月 27 日
And in the end, PI is one scalar value - some sort of cumulated approximation error over complete Omega ?
In this case, fmincon is better suited to solve your problem compared to lsqnonlin, I guess, because PI already performs summation of the errors squared in the discretization points whereas lsqnonlin would work with the errors in the discretization points separately.
Matt J
Matt J 2022 年 7 月 27 日
編集済み: Matt J 2022 年 7 月 27 日
@Abhilash Awasthi If you construct the vector-valued function,
F(theta)=[u(theta)-um;
sqrt(2*regularization(theta))]
and give this F(theta) to lsqnonlin as the objective function, then lsqnonlin will minimize the regularized objective function H(theta) that you have posted.

サインインしてコメントする。

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by