Rearrange the rows as column variables

3 ビュー (過去 30 日間)
Man Lap Fung
Man Lap Fung 2022 年 6 月 5 日
編集済み: Stephen23 2022 年 6 月 6 日
I have a large txt file with 41MB. It consists of 72 sensors measurements over the time. In case, I want to rearrange the table so that the 72 sensors are set as the column headings while the change of the "R" values of each of the sensors are shown under each column. For each row, the recording time of the #0 sensor will be put as each time step.
The resulting table would be like this:
As the file is too large and cannot be attached, below I show the first 3 sets of 72 sensor measurements. There are more than 10,000 sets in total. Thank you in advance.
# R Time
0 -2.1 03.11.2021 11:14:31
1 -7.04 03.11.2021 11:14:34
2 -11.85 03.11.2021 11:14:37
3 16 03.11.2021 11:14:41
4 12.13 03.11.2021 11:14:44
5 3.64 03.11.2021 11:14:47
6 -5.85 03.11.2021 11:14:50
7 37.43 03.11.2021 11:14:53
8 30.75 03.11.2021 11:14:57
9 23.03 03.11.2021 11:15:00
10 13.36 03.11.2021 11:15:03
11 60.76 03.11.2021 11:15:06
12 58.52 03.11.2021 11:15:09
13 56.85 03.11.2021 11:15:13
14 55.63 03.11.2021 11:15:16
15 87.26 03.11.2021 11:15:19
16 89.2 03.11.2021 11:15:22
17 104.1 03.11.2021 11:15:26
18 151.12 03.11.2021 11:15:29
19 113.1 03.11.2021 11:15:32
20 116.69 03.11.2021 11:15:35
21 140.12 03.11.2021 11:15:38
22 -5.56 03.11.2021 11:15:42
23 -17.22 03.11.2021 11:15:45
24 -27.46 03.11.2021 11:15:48
25 14.65 03.11.2021 11:15:51
26 3.89 03.11.2021 11:15:55
27 -15.5 03.11.2021 11:15:58
28 -53.9 03.11.2021 11:16:01
29 29.31 03.11.2021 11:16:04
30 19.07 03.11.2021 11:16:08
31 -5.17 03.11.2021 11:16:11
32 -60.37 03.11.2021 11:16:14
33 52.99 03.11.2021 11:16:17
34 41.11 03.11.2021 11:16:20
35 17.9 03.11.2021 11:16:24
36 -4.89 03.11.2021 11:16:27
37 80.25 03.11.2021 11:16:30
38 84.29 03.11.2021 11:16:33
39 81.63 03.11.2021 11:16:37
40 58.14 03.11.2021 11:16:40
41 110.88 03.11.2021 11:16:43
42 115.76 03.11.2021 11:16:46
43 110.73 03.11.2021 11:16:49
44 117.21 03.11.2021 11:16:53
45 -8.89 03.11.2021 11:16:56
46 -30.44 03.11.2021 11:16:59
47 -75.54 03.11.2021 11:17:02
48 9.1 03.11.2021 11:17:06
49 -0.3 03.11.2021 11:17:09
50 -40.23 03.11.2021 11:17:12
51 -141.76 03.11.2021 11:17:15
52 27.14 03.11.2021 11:17:18
53 14.53 03.11.2021 11:17:22
54 -31.13 03.11.2021 11:17:25
55 -291.18 03.11.2021 11:17:28
56 51.57 03.11.2021 11:17:31
57 40.84 03.11.2021 11:17:35
58 3.42 03.11.2021 11:17:38
59 -109.39 03.11.2021 11:17:41
60 72.22 03.11.2021 11:17:44
61 66.68 03.11.2021 11:17:48
62 43.86 03.11.2021 11:17:51
63 24.17 03.11.2021 11:17:54
64 99.99 03.11.2021 11:17:57
65 95.01 03.11.2021 11:18:00
66 83.49 03.11.2021 11:18:04
67 84.02 03.11.2021 11:18:07
68 -138.91 03.11.2021 11:18:10
69 -110.91 03.11.2021 11:18:13
70 -109.58 03.11.2021 11:18:16
71 -107.61 03.11.2021 11:18:20
0 -2.08 03.11.2021 14:15:03
1 -7.02 03.11.2021 14:15:07
2 -11.92 03.11.2021 14:15:10
3 16.04 03.11.2021 14:15:13
4 12.18 03.11.2021 14:15:16
5 3.72 03.11.2021 14:15:20
6 -5.92 03.11.2021 14:15:23
7 37.35 03.11.2021 14:15:26
8 30.59 03.11.2021 14:15:29
9 23.13 03.11.2021 14:15:33
10 13.46 03.11.2021 14:15:36
11 60.91 03.11.2021 14:15:39
12 58.53 03.11.2021 14:15:42
13 56.95 03.11.2021 14:15:45
14 55.87 03.11.2021 14:15:49
15 87.23 03.11.2021 14:15:52
16 89.47 03.11.2021 14:15:55
17 103.47 03.11.2021 14:15:58
18 151.15 03.11.2021 14:16:01
19 113.29 03.11.2021 14:16:05
20 116.45 03.11.2021 14:16:08
21 140.87 03.11.2021 14:16:11
22 -5.62 03.11.2021 14:16:14
23 -17.37 03.11.2021 14:16:18
24 -27.34 03.11.2021 14:16:21
25 14.6 03.11.2021 14:16:24
26 3.91 03.11.2021 14:16:27
27 -15.54 03.11.2021 14:16:30
28 -54.16 03.11.2021 14:16:34
29 29.26 03.11.2021 14:16:37
30 18.82 03.11.2021 14:16:40
31 -4.91 03.11.2021 14:16:43
32 -60.41 03.11.2021 14:16:46
33 52.75 03.11.2021 14:16:50
34 40.86 03.11.2021 14:16:53
35 17.73 03.11.2021 14:16:56
36 -4.76 03.11.2021 14:16:59
37 80.4 03.11.2021 14:17:03
38 84.38 03.11.2021 14:17:06
39 81.41 03.11.2021 14:17:09
40 58.67 03.11.2021 14:17:12
41 110.93 03.11.2021 14:17:15
42 115.56 03.11.2021 14:17:19
43 110.8 03.11.2021 14:17:22
44 116.95 03.11.2021 14:17:25
45 -8.28 03.11.2021 14:17:28
46 -30.01 03.11.2021 14:17:32
47 -74.32 03.11.2021 14:17:35
48 9.26 03.11.2021 14:17:38
49 -0.23 03.11.2021 14:17:41
50 -40.28 03.11.2021 14:17:44
51 -142.73 03.11.2021 14:17:48
52 27.11 03.11.2021 14:17:51
53 14.56 03.11.2021 14:17:54
54 -31.44 03.11.2021 14:17:57
55 -294.58 03.11.2021 14:18:00
56 51.62 03.11.2021 14:18:04
57 41.02 03.11.2021 14:18:07
58 3.26 03.11.2021 14:18:10
59 -108.46 03.11.2021 14:18:13
60 72.29 03.11.2021 14:18:17
61 66.25 03.11.2021 14:18:20
62 43.66 03.11.2021 14:18:23
63 24.59 03.11.2021 14:18:26
64 100.69 03.11.2021 14:18:29
65 95 03.11.2021 14:18:33
66 84.54 03.11.2021 14:18:36
67 84.67 03.11.2021 14:18:39
68 -103.68 03.11.2021 14:18:42
69 -4.82 03.11.2021 14:18:46
70 -9.55 03.11.2021 14:18:49
71 -16.63 03.11.2021 14:18:52
0 -2.08 03.11.2021 14:30:03
1 -6.93 03.11.2021 14:30:06
2 -11.77 03.11.2021 14:30:09
3 15.95 03.11.2021 14:30:12
4 12.1 03.11.2021 14:30:16
5 3.61 03.11.2021 14:30:19
6 -5.83 03.11.2021 14:30:22
7 37.47 03.11.2021 14:30:25
8 30.61 03.11.2021 14:30:28
9 23.19 03.11.2021 14:30:32
10 13.46 03.11.2021 14:30:35
11 60.85 03.11.2021 14:30:38
12 58.32 03.11.2021 14:30:41
13 57.15 03.11.2021 14:30:45
14 55.74 03.11.2021 14:30:48
15 87.05 03.11.2021 14:30:51
16 89.12 03.11.2021 14:30:54
17 103.73 03.11.2021 14:30:57
18 151.31 03.11.2021 14:31:01
19 113.31 03.11.2021 14:31:04
20 116.4 03.11.2021 14:31:07
21 140.44 03.11.2021 14:31:10
22 -5.69 03.11.2021 14:31:13
23 -17.52 03.11.2021 14:31:17
24 -27.84 03.11.2021 14:31:20
25 14.29 03.11.2021 14:31:23
26 4.04 03.11.2021 14:31:26
27 -15.75 03.11.2021 14:31:30
28 -53.91 03.11.2021 14:31:33
29 29 03.11.2021 14:31:36
30 18.93 03.11.2021 14:31:39
31 -5.1 03.11.2021 14:31:42
32 -60.53 03.11.2021 14:31:46
33 52.97 03.11.2021 14:31:49
34 40.82 03.11.2021 14:31:52
35 17.52 03.11.2021 14:31:55
36 -4.83 03.11.2021 14:31:59
37 80.38 03.11.2021 14:32:02
38 84.13 03.11.2021 14:32:05
39 81.79 03.11.2021 14:32:08
40 58.01 03.11.2021 14:32:11
41 110.93 03.11.2021 14:32:15
42 115.43 03.11.2021 14:32:18
43 110.78 03.11.2021 14:32:21
44 117.2 03.11.2021 14:32:24
45 -9.37 03.11.2021 14:32:27
46 -31.7 03.11.2021 14:32:31
47 -78.47 03.11.2021 14:32:34
48 8.42 03.11.2021 14:32:37
49 -0.78 03.11.2021 14:32:40
50 -41.45 03.11.2021 14:32:44
51 -142.92 03.11.2021 14:32:47
52 26.08 03.11.2021 14:32:50
53 13.67 03.11.2021 14:32:53
54 -32.11 03.11.2021 14:32:56
55 -296.35 03.11.2021 14:33:00
56 51.13 03.11.2021 14:33:03
57 40.15 03.11.2021 14:33:06
58 2.87 03.11.2021 14:33:09
59 -109.49 03.11.2021 14:33:13
60 71.65 03.11.2021 14:33:16
61 65.62 03.11.2021 14:33:19
62 42.51 03.11.2021 14:33:22
63 23.27 03.11.2021 14:33:25
64 99.31 03.11.2021 14:33:29
65 94.27 03.11.2021 14:33:32
66 82.23 03.11.2021 14:33:35
67 83.96 03.11.2021 14:33:38
68 -3.89 03.11.2021 14:33:41
69 -5.14 03.11.2021 14:33:45
70 -9.38 03.11.2021 14:33:48
71 -16.86 03.11.2021 14:33:51
  1 件のコメント
Stephen23
Stephen23 2022 年 6 月 6 日
編集済み: Stephen23 2022 年 6 月 6 日
Keeping the data in three columns would probably make it easier to work with.
For example, three columns means you can use the standard methods for analyzing table data:

サインインしてコメントする。

採用された回答

Voss
Voss 2022 年 6 月 5 日
If I understand correctly, you only need the times corresponding to sensor #0, and the other times can be discarded/ignored. If that's the case, maybe something along these lines will work for you:
t = readtable('table.txt','PreserveVariableNames',true);
N_sensors = 72;
zero_times = t{t{:,'#'} == 0,'Time'};
R = num2cell(reshape(t.R,N_sensors,[]).',1);
t_new = table(zero_times,R{:},'VariableNames',['Time',sprintfc('%d',0:N_sensors-1)])
t_new = 3×73 table
Time 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 ___________________ _____ _____ ______ _____ _____ ____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ _____ ______ ______ ______ ______ ______ _____ ______ ______ _____ ____ ______ ______ _____ _____ _____ ______ _____ _____ _____ _____ _____ _____ _____ _____ ______ ______ ______ ______ _____ ______ ______ ____ _____ ______ _______ _____ _____ ______ _______ _____ _____ ____ _______ _____ _____ _____ _____ ______ _____ _____ _____ _______ _______ _______ _______ 03.11.2021 11:14:31 -2.1 -7.04 -11.85 16 12.13 3.64 -5.85 37.43 30.75 23.03 13.36 60.76 58.52 56.85 55.63 87.26 89.2 104.1 151.12 113.1 116.69 140.12 -5.56 -17.22 -27.46 14.65 3.89 -15.5 -53.9 29.31 19.07 -5.17 -60.37 52.99 41.11 17.9 -4.89 80.25 84.29 81.63 58.14 110.88 115.76 110.73 117.21 -8.89 -30.44 -75.54 9.1 -0.3 -40.23 -141.76 27.14 14.53 -31.13 -291.18 51.57 40.84 3.42 -109.39 72.22 66.68 43.86 24.17 99.99 95.01 83.49 84.02 -138.91 -110.91 -109.58 -107.61 03.11.2021 14:15:03 -2.08 -7.02 -11.92 16.04 12.18 3.72 -5.92 37.35 30.59 23.13 13.46 60.91 58.53 56.95 55.87 87.23 89.47 103.47 151.15 113.29 116.45 140.87 -5.62 -17.37 -27.34 14.6 3.91 -15.54 -54.16 29.26 18.82 -4.91 -60.41 52.75 40.86 17.73 -4.76 80.4 84.38 81.41 58.67 110.93 115.56 110.8 116.95 -8.28 -30.01 -74.32 9.26 -0.23 -40.28 -142.73 27.11 14.56 -31.44 -294.58 51.62 41.02 3.26 -108.46 72.29 66.25 43.66 24.59 100.69 95 84.54 84.67 -103.68 -4.82 -9.55 -16.63 03.11.2021 14:30:03 -2.08 -6.93 -11.77 15.95 12.1 3.61 -5.83 37.47 30.61 23.19 13.46 60.85 58.32 57.15 55.74 87.05 89.12 103.73 151.31 113.31 116.4 140.44 -5.69 -17.52 -27.84 14.29 4.04 -15.75 -53.91 29 18.93 -5.1 -60.53 52.97 40.82 17.52 -4.83 80.38 84.13 81.79 58.01 110.93 115.43 110.78 117.2 -9.37 -31.7 -78.47 8.42 -0.78 -41.45 -142.92 26.08 13.67 -32.11 -296.35 51.13 40.15 2.87 -109.49 71.65 65.62 42.51 23.27 99.31 94.27 82.23 83.96 -3.89 -5.14 -9.38 -16.86
  2 件のコメント
Man Lap Fung
Man Lap Fung 2022 年 6 月 5 日
Yes. That's what I would like to create. Thank you!
Voss
Voss 2022 年 6 月 5 日
You're welcome!

サインインしてコメントする。

その他の回答 (1 件)

Image Analyst
Image Analyst 2022 年 6 月 5 日
編集済み: Image Analyst 2022 年 6 月 5 日
Did you try readtable
t = readtable('dataTable.txt')
t = 216×3 table
Number R DateAndTime ______ ______ ___________________ 0 -2.1 03.11.2021 11:14:31 1 -7.04 03.11.2021 11:14:34 2 -11.85 03.11.2021 11:14:37 3 16 03.11.2021 11:14:41 4 12.13 03.11.2021 11:14:44 5 3.64 03.11.2021 11:14:47 6 -5.85 03.11.2021 11:14:50 7 37.43 03.11.2021 11:14:53 8 30.75 03.11.2021 11:14:57 9 23.03 03.11.2021 11:15:00 10 13.36 03.11.2021 11:15:03 11 60.76 03.11.2021 11:15:06 12 58.52 03.11.2021 11:15:09 13 56.85 03.11.2021 11:15:13 14 55.63 03.11.2021 11:15:16 15 87.26 03.11.2021 11:15:19
It doesn't look like for each unique time there are 72 readings, so what do you plan on doing about that?

カテゴリ

Help Center および File ExchangeTables についてさらに検索

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by