I am trying to solve fsolve (multi-variable) but getting an error.

3 ビュー (過去 30 日間)
Dhawal Beohar
Dhawal Beohar 2022 年 2 月 16 日
コメント済み: Walter Roberson 2022 年 2 月 17 日
function fval = func4uo(u)
d1=1;
n=1;
m=1;
a=1;
T=1;
PsByN_0=1;
fval = ((-1/u)*log((d1^m)/(a*n*PsByN_0*T*u)+d1^m)*a*T)/(1-a)*T;
xsol = fsolve (@(u) func4uo(u), 0)
ERROR: Not enough input arguments.
  14 件のコメント
Torsten
Torsten 2022 年 2 月 17 日
編集済み: Torsten 2022 年 2 月 17 日
Save the file as main.m and run it after assigning a value to Ps.
Dhawal Beohar
Dhawal Beohar 2022 年 2 月 17 日
Thanks ! but some other errors,
function main
u0 = 1;
u = fzero(@func4uo,u0)
end
function fval = func4uo(u)
d1=10;
n=10^-11.4;
m=2.7;
a=0.5;
T=1;
PsByN_0dB=20;
PsByN_0=10.^(PsByN_0dB/10);
fval = ((-1./u)*log((d1^m)./(a*n*PsByN_0*T*u)+d1^m)*a*T)./(1-a)*T - (1./u)*log(expint(-PsByN_0*u))*exp(-PsByN_0*u);
end
Error using fzero (line 328)
Function value at starting guess must be finite and real.
Error in main (line 39)
u = fzero(@func4uo,u0)

サインインしてコメントする。

採用された回答

Matt J
Matt J 2022 年 2 月 16 日
By choosing a=1, you are dividing by 1-a=0 for any input value, u.
f(0), f(1), f(2)
ans = -Inf
ans = -Inf
ans = -Inf
function fval = f(u)
d1=1;
n=1;
m=1;
a=1;
T=1;
PsByN_0=1;
fval = ((-1/u)*log((d1^m)/(a*n*PsByN_0*T*u)+d1^m)*a*T)/(1-a)*T;
end

その他の回答 (2 件)

Walter Roberson
Walter Roberson 2022 年 2 月 17 日
There is no zero for that function.
If you use negative u, then the imaginary component of the function approaches negative infinity as u gets close to zero, and only reaches zero again as u gets to -infinity.
If you use positive u and floating point values, then the expint() overflows to infinity when you reach about 8, and the exp() term numerically goes to 0 in floating point, and inf*0 is nan.
If you use positive u with the symbolic toolbox, you can show that the real part of the function is negative until infinity is reached.
Or perhaps I should say that the root is u = +inf as in the limit the function does become 0.
format long g
U = linspace(5,8);
Z = func4uo(U);
figure(); plot(U, real(Z), 'k'); title('real'); xlim([0 10])
figure(); plot(U, imag(Z), 'r'); title('imaginary'); xlim([0 10])
func4uo(10)
ans =
NaN + NaNi
func4uo(sym(10))
ans = 
vpa(ans)
ans = 
syms u
Z = func4uo(u)
Z = 
limit(Z, u, inf)
ans = 
0
vpa(ans)
ans = 
0.0
function fval = func4uo(u)
d1=10;
n=10^-11.4;
m=2.7;
a=0.5;
T=1;
PsByN_0dB=20;
PsByN_0=10.^(PsByN_0dB/10);
fval = ((-1./u).*log((d1.^m)./(a.*n.*PsByN_0.*T.*u)+d1.^m).*a.*T)./(1-a).*T - (1./u).*log(expint(-PsByN_0.*u)).*exp(-PsByN_0.*u);
end
  1 件のコメント
Dhawal Beohar
Dhawal Beohar 2022 年 2 月 17 日
Thanks Walter for the help and explanation. I might need to check equation again.

サインインしてコメントする。


Walter Roberson
Walter Roberson 2022 年 2 月 17 日
編集済み: Walter Roberson 2022 年 2 月 17 日
Z = @(PS) arrayfun(@(ps) fzero(@(u)func4uo(u,ps), [0.6775499178144678 1e3]), PS)
Z = function_handle with value:
@(PS)arrayfun(@(ps)fzero(@(u)func4uo(u,ps),[0.6775499178144678,1e3]),PS)
P = linspace(-5, 1);
syms u
F = func4uo(u, P(1))
F = 
string(F)
ans = "- log(692455071077987426423013376/(275018307117627*u) + 2204244764264291/4398046511104)/u - (exp(5*u)*log(expint(5*u)))/u"
%vpasolve(F)
%{
U = Z(P);
plot(P, real(U), 'k', P, imag(U), 'r');
xlabel('Ps'); ylabel('u')
%}
function fval = func4uo(u,Ps)
d1=10;
n=10^-11.4;
m=2.7;
a=0.5;
T=1;
PsByN_0dB=20;
PsByN_0=10.^(PsByN_0dB/10);
fval = ((-1./u).*log((d1^m)./(a.*n.*PsByN_0.*T.*u)+d1.^m).*a.*T)./(1-a).*T - (1./u).*log(expint(-Ps.*u)).*exp(-Ps.*u);
end
  5 件のコメント
Dhawal Beohar
Dhawal Beohar 2022 年 2 月 17 日
have you done any changes? Sorry I am not able to find any change....
I am facing below error:
Not enough input arguments.
Error in func4uo (line 47)
fval (1,1) = ((-1./u)*log((d1^m)./(a*n*PsByN_0*T*u)+d1^m)*a*T)./(1-a)*T - (1./u)*log(expint(-PsByN_0*u))*exp(-PsByN_0*u);
function fval = func4uo(u)
d1=10;
n=10^-11.4;
m=2.7;
a=0.5;
T=1;
PsByN_0dB=20;
PsByN_0=10.^(PsByN_0dB/10);
fval (1,1) = ((-1./u)*log((d1^m)./(a*n*PsByN_0*T*u)+d1^m)*a*T)./(1-a)*T - (1./u)*log(expint(-PsByN_0*u))*exp(-PsByN_0*u);
zero = fzero(fval,0)
Walter Roberson
Walter Roberson 2022 年 2 月 17 日
In your other Question I show that your revised code has no root (unless you count u = infinity)

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeIntroduction to Installation and Licensing についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by