Generalized eigenvectors not orthogonal

5 ビュー (過去 30 日間)
Uri Cohen
Uri Cohen 2014 年 11 月 21 日
コメント済み: Matt J 2014 年 11 月 21 日
I use eig to solve a generalized eigenvalues problem from two symmetric real matrices and resulting eigenvalues are not orthogonal even though there is no degeneration in the eigenvalues. Minimal code to reproduce this:
A=randn(10); B=randn(10);
A=A+A'; B=B+B';
[V,D]=eig(A,B);
diag(D)
V(:,1:6)'*V(:,1:6)
What do I miss?
  1 件のコメント
Matt J
Matt J 2014 年 11 月 21 日
I'm not aware of any result saying they should be orthogonal. The material here
mentions they will be B-orthogonal, but only if B is positive definite.

サインインしてコメントする。

回答 (1 件)

MA
MA 2014 年 11 月 21 日
They are orthogonal, what is the problem?
clear all
close all
clc;
A=randn(10);
B=randn(10);
AA=A+A';
BB=B+B';
[V,D]=eig(AA);
[VV,DD]=eig(BB);
diag(D);
diag(DD);
V(:,1:10)'*V(:,1:10)
VV(:,1:10)'*VV(:,1:10)
  2 件のコメント
MA
MA 2014 年 11 月 21 日
in your case must be x=y:
clear all
clc;
A=randn(10);
B=randn(10);
AA=A+A';
BB=B+B';
[V,D]=eig(AA,BB);
%x=y
x=AA*V
y=BB*V*D
Uri Cohen
Uri Cohen 2014 年 11 月 21 日
The eigenvectors are orthogonal, while the generalized eigenvectors are not, also in your example...
A=randn(10); AA=A+A';
B=randn(10); BB=B+B';
[V,D]=eig(AA);
V*V' % eye(10)
[V,D]=eig(AA, BB);
V*V' % not eye(10)

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeLinear Algebra についてさらに検索

製品

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by