Counting number of objects based on color

12 ビュー (過去 30 日間)
dunphy
dunphy 2021 年 12 月 20 日
コメント済み: Stephen23 2021 年 12 月 21 日
How do you make a script which codes for counting the number of objects based on color?

回答 (1 件)

Image Analyst
Image Analyst 2021 年 12 月 20 日
Construct the 3-D histogram where you scan the image, getting the R, G, and B values and using those as an index into a histogram array. Then count the number of non-zero values. Something like
h = zeros(256,256,256);
[rows, columns, numberOfColorChannels] = size(rgbImage);
for col = 1 : columns
for row = 1 : rows
r = rgbImage(row, col, 1);
g = rgbImage(row, col, 2);
b = rgbImage(row, col, 3);
h(r, g, b) = h(r, g, b) + 1;
end
end
numColors = nnz(h)
Be aware that this counts unique colors even if they're only extremely slightly different. For example [100, 120, 140] is considered a different color than [101, 120, 140]. If you want wider bins than that you'll have to do it slightly differently. You could even use a clustering method like kmeans() to try to figure out some best number of clusters.
  2 件のコメント
curious dolphin
curious dolphin 2021 年 12 月 21 日
hello @Image Analyst, what if i want to count the number of blue colored objects in a picture?
Image Analyst
Image Analyst 2021 年 12 月 21 日
See this:
% Demo by Image Analyst.
clc; % Clear the command window.
close all; % Close all figures (except those of imtool.)
clearvars;
workspace; % Make sure the workspace panel is showing.
format long g;
format compact;
fontSize = 16;
fprintf('Beginning to run %s.m ...\n', mfilename);
%-----------------------------------------------------------------------------------------------------------------------------------
% Read in image.
folder = [];
baseFileName = 'toys.jpeg';
fullFileName = fullfile(folder, baseFileName);
% Check if file exists.
if ~exist(fullFileName, 'file')
% The file doesn't exist -- didn't find it there in that folder.
% Check the entire search path (other folders) for the file by stripping off the folder.
fullFileNameOnSearchPath = baseFileName; % No path this time.
if ~exist(fullFileNameOnSearchPath, 'file')
% Still didn't find it. Alert user.
errorMessage = sprintf('Error: %s does not exist in the search path folders.', fullFileName);
uiwait(warndlg(errorMessage));
return;
end
end
rgbImage = imread(fullFileName);
[rows, columns, numberOfColorChannels] = size(rgbImage)
% Display the image.
subplot(2, 2, 1);
imshow(rgbImage, []);
axis('on', 'image');
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
caption = sprintf('Original RGB Image : "%s"\n%d rows by %d columns', baseFileName, rows, columns);
title(caption, 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
% Set up figure properties:
% Enlarge figure to full screen.
hFig1 = gcf;
hFig1.Units = 'Normalized';
hFig1.WindowState = 'maximized';
% Get rid of tool bar and pulldown menus that are along top of figure.
% set(gcf, 'Toolbar', 'none', 'Menu', 'none');
% Give a name to the title bar.
hFig1.Name = 'Demo by Image Analyst';
%-----------------------------------------------------------------------------------------------------------------------------------
[mask, maskedRGBImage] = createMask(rgbImage);
% Find area of things
subplot(2, 2, 2);
props = regionprops(mask, 'Area')
allAreas = sort([props.Area], 'Descend')
histogram([props.Area], 100)
% Display the image.
subplot(2, 2, 2);
imshow(mask, []);
axis('on', 'image');
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
title('Initial Mask Image', 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
% Clean up the mask.
% Fill holes
mask = imfill(mask, 'holes');
% Get rid of small things. Looks like things we're interested in are bigger than about 1000.
mask = bwareaopen(mask, 1000);
% Display final mask
subplot(2, 2, 3);
imshow(mask, []);
axis('on', 'image');
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
title('Final Mask', 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
% Find the properties of all the blobs.
props = regionprops(mask, 'BoundingBox', 'Centroid', 'Image')
numRegions = length(props)
%-----------------------------------------------------------------------
% Plot the borders of all the blobs in the overlay above the original image
% using the coordinates returned by bwboundaries().
% bwboundaries() returns a cell array, where each cell contains the row/column coordinates for an object in the image.
subplot(2, 2, 4);
imshow(rgbImage, []);
axis('on', 'image');
hp = impixelinfo(); % Set up status line to see values when you mouse over the image.
title('Objects Outlined', 'FontSize', fontSize, 'Interpreter', 'None');
drawnow;
% Here is where we actually get the boundaries for each blob.
boundaries = bwboundaries(mask);
% boundaries is a cell array - one cell for each blob.
% In each cell is an N-by-2 list of coordinates in a (row, column) format. Note: NOT (x,y).
% Column 1 is rows, or y. Column 2 is columns, or x.
numberOfBoundaries = size(boundaries, 1); % Count the boundaries so we can use it in our for loop
% Here is where we actually plot the boundaries of each blob in the overlay.
hold on; % Don't let boundaries blow away the displayed image.
for k = 1 : numberOfBoundaries
thisBoundary = boundaries{k}; % Get boundary for this specific blob.
x = thisBoundary(:,2); % Column 2 is the columns, which is x.
y = thisBoundary(:,1); % Column 1 is the rows, which is y.
plot(x, y, 'r-', 'LineWidth', 2); % Plot boundary in red.
end
hold off;
caption = sprintf('%d Outlines, from bwboundaries()', numberOfBoundaries);
title(caption, 'FontSize', fontSize);
axis('on', 'image'); % Make sure image is not artificially stretched because of screen's aspect ratio.
%-----------------------------------------------------------------------
% Plot bounding boxes over all blue blobs.
for k = 1 : numRegions
thisBB = props(k).BoundingBox;
rectangle('Position', thisBB, 'EdgeColor', 'r', 'LineWidth', 2)
end
%-----------------------------------------------------------------------
% Crop out individual images.
plotRows = ceil(sqrt(numRegions));
figure;
outputFolder = fullfile(pwd, 'Individual Images');
if ~isfolder(outputFolder)
mkdir(outputFolder);
end
for k = 1 : numRegions
thisImage = imcrop(rgbImage, props(k).BoundingBox);
% Get the mask for this cropped image.
thisMask = props(k).Image;
% For some reason, thisMask is one pixel narrower and taller than thisImage. Expand it.
thisMask(end+1, end+1) = false;
% Mask out background and other objects.
thisImage = bsxfun(@times, thisImage, cast(thisMask, 'like', rgbImage)); % R2019b and earlier
% Display this cropped, masked image.
subplot(plotRows, plotRows, k);
imshow(thisImage)
baseFileName = sprintf('Image #%2.2d.png', k);
fullFileName = fullfile(outputFolder, baseFileName);
imwrite(thisImage, fullFileName);
end
msgbox('Done!');
%========================================================================================================
function [BW,maskedRGBImage] = createMask(RGB)
%createMask Threshold RGB image using auto-generated code from colorThresholder app.
% [BW,MASKEDRGBIMAGE] = createMask(RGB) thresholds image RGB using
% auto-generated code from the colorThresholder app. The colorspace and
% range for each channel of the colorspace were set within the app. The
% segmentation mask is returned in BW, and a composite of the mask and
% original RGB images is returned in maskedRGBImage.
% Auto-generated by colorThresholder app on 20-Dec-2021
%------------------------------------------------------
% Convert RGB image to chosen color space
I = rgb2hsv(RGB);
% Define thresholds for channel 1 based on histogram settings
channel1Min = 0.558;
channel1Max = 0.765;
% Define thresholds for channel 2 based on histogram settings
channel2Min = 0.251;
channel2Max = 1.000;
% Define thresholds for channel 3 based on histogram settings
channel3Min = 0.000;
channel3Max = 1.000;
% Create mask based on chosen histogram thresholds
sliderBW = (I(:,:,1) >= channel1Min ) & (I(:,:,1) <= channel1Max) & ...
(I(:,:,2) >= channel2Min ) & (I(:,:,2) <= channel2Max) & ...
(I(:,:,3) >= channel3Min ) & (I(:,:,3) <= channel3Max);
BW = sliderBW;
% Initialize output masked image based on input image.
maskedRGBImage = RGB;
% Set background pixels where BW is false to zero.
maskedRGBImage(repmat(~BW,[1 1 3])) = 0;
end

サインインしてコメントする。

カテゴリ

Help Center および File ExchangeGet Started with Image Processing Toolbox についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by