Hankel function, mathematical definition

27 ビュー (過去 30 日間)
Kevin ROUARD
Kevin ROUARD 2021 年 12 月 11 日
コメント済み: Rik 2021 年 12 月 20 日
Hello everyone,
I'm wonder about the besselh(.) function.
The definition given is,
H = besselh(nu,K,Z,scale) specifies whether to scale the Hankel function to avoid overflow or loss of accuracy. If scale is 1, then Hankel functions of the first kind H(1)ν(z) are scaled by eiZ, and Hankel functions of the second kind H(2)ν(z) are scaled by e+iZ.
But I found that (in eq. 12.140-2, Weber & Arfken, 2003)
Hankel first kind:
Hankel second kind:
That mean H(1)ν(z) correspond to and H(2)ν(z) correspond to ? and why that is inverted so ?
Thank you.
  3 件のコメント
Stephen23
Stephen23 2021 年 12 月 20 日
Hankel function, mathematical definition
Hello everyone,
I'm wonder about the besselh(.) function.
The definition given is,
H = besselh(nu,K,Z,scale) specifies whether to scale the Hankel function to avoid overflow or loss of accuracy. If scale is 1, then Hankel functions of the first kind H(1)ν(z) are scaled by eiZ, and Hankel functions of the second kind H(2)ν(z) are scaled by e+iZ.
But I found that (in eq. 12.140-2, Weber & Arfken, 2003)
Hankel first kind:
Hankel second kind:
That mean H(1)ν(z) correspond to and H(2)ν(z) correspond to ? and why that is inverted so ?
Thank you.
Rik
Rik 2021 年 12 月 20 日
Regarding your flag, why should this question be deleted?

サインインしてコメントする。

採用された回答

David Goodmanson
David Goodmanson 2021 年 12 月 12 日
編集済み: David Goodmanson 2021 年 12 月 12 日
Hi Kevin,
The hankel functions h that you cited are spherical hankel functions, which have half-integer order and are related to the regular hankel function H by
h(n,1,z) = const/sqrt(z)*H(n+1/2,1,z) % first kind
h(n,2,z) = const/sqrt(z)*H(n+1/2,2,z) % second kind
where
H(m,1,z) = besselh(m,1,z)
H(m,2,z) = besselh(m,2,z)
To the best of my knowledge (I have 2019b), spherical bessel functions still are not a part of core Matlab.
Those details do not change the basic question about normalization. For large z,
besselh(m,1,z) --> const/sqrt(z)*exp(i*z) as |z| --> inf
besselh(m,2,z) --> const/sqrt(z)*exp(-i*z) as |z| --> inf
so the first kind goes like exp(i*z) and the second kind goes like exp(-i*z) as you said.
For larger but not overly large z, the factor in front is a slowly varying function that goes over to const/sqrt(z) in the limit.
Including scaling just means that the bessel function of the first kind is multiplied by exp(-i*z) to make the known exponential factor go away, leaving the slowly varying function. Similarly for the second kind.
  1 件のコメント
Kevin ROUARD
Kevin ROUARD 2021 年 12 月 12 日
Hi David,
thank you for the answer. Effectively, I speak about spherical Hankel functions. Thanks for the scaling explanation.

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeBessel functions についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by