Evaluation metrics for deep learning model model
1 回表示 (過去 30 日間)
古いコメントを表示
What is the command to be used for computing the evaluation metrics for a deep learning model such as precision, recall, specificity, F1 score.
Should it explicitly computed from the Confusion matrix by using the standard formulas or can it be directly computed in the code and displayed.
Also are these metrics computed on the Validation dataset.
Kindly provide inputs regarding the above.
0 件のコメント
採用された回答
Pranjal Kaura
2021 年 11 月 23 日
編集済み: Pranjal Kaura
2021 年 11 月 23 日
Hey Sushma,
Thank you for bringing this up. The concerned parties are looking at this issue and will try to roll it in future releases.
Hope this helps!
2 件のコメント
Pranjal Kaura
2021 年 11 月 26 日
'perfcurve' is used for plotting performance curves on classifier outputs. To plot a Precision-Recall curve you can set the 'XCrit' (Criterion to compute 'X') and YCrit to 'reca' and 'prec' respectively, to compute recall and precision. You can refer the following code snippet:
[X, Y] = perfcurve(labels, scores, posclass, 'XCrit', 'reca', 'YCrit', 'prec');
その他の回答 (0 件)
参考
カテゴリ
Help Center および File Exchange で Detection についてさらに検索
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!