Problem with solving multivariable trigonometric equations

4 ビュー (過去 30 日間)
Minerva Bionic
Minerva Bionic 2021 年 9 月 30 日
編集済み: Minerva Bionic 2021 年 9 月 30 日
Hi everyone,
I have no idea where is wrong in my code?
clear all;
%%
clc
Fs = 1e6;
f = 5;
t = 2e6;
ang0 = t*2*pi*f/Fs
ang0 = 62.8319
dang = 1*2*pi*f/Fs
dang = 3.1416e-05
y0= 1*sin(t*2*pi*f/Fs);
y1= 1*sin((t+1)*2*pi*f/Fs);
y2= 1*sin((t+2)*2*pi*f/Fs);
% for i = 1:10e6
% Curve(i) = 1*sin(i*2*pi*f/Fs);
% end
%
% close all
% hold on
% plot(Curve)
%%
syms x y z
% assume(x > 0)
% assumeAlso(x < 1)
% assume(z >= 0)
% assumeAlso(z <= 2*pi)
% assume(y > 0)
% assumeAlso(y <= 100)
[x,y,z]=solve(x*sin((t*2*pi*y/Fs) + z)==y0 ,x*sin(((t+1)*2*pi*y/Fs)+z)==y1,x*sin(((t+2)*2*pi*y/Fs)+z)==y2,'ReturnConditions',true)
x = Empty sym: 0-by-1 y = Empty sym: 1-by-0 z = Empty sym: 0-by-1

採用された回答

Matt J
Matt J 2021 年 9 月 30 日
編集済み: Matt J 2021 年 9 月 30 日
In order for solve() to find a solution, an exact analytical solution must exist.
  9 件のコメント
Minerva Bionic
Minerva Bionic 2021 年 9 月 30 日
編集済み: Minerva Bionic 2021 年 9 月 30 日
I know "least square nonlinear" and vpasolve methods are great in solving equations. But since I'm curious about another possible methods, I thought it would be fine if I ask you for other possible methods.
Minerva Bionic
Minerva Bionic 2021 年 9 月 30 日
編集済み: Minerva Bionic 2021 年 9 月 30 日
As I realized I should provide arrays of data for x, y, z for lsqnonlin method.
The solve method can return symbolic solutions. Since I want to implement the solution in a hardware, solve method is the best method in my case.
However, I still have problem with numerical vpasolve() method
clear all
clc
Fs = 1e6;
f = 5;
t = 2e6;
y0= 1*sin(t*2*pi*f/Fs);
y1= 1*sin((t+1)*2*pi*f/Fs);
y2= 1*sin((t+2)*2*pi*f/Fs);
% Available information for solving equations: y0,y1,y2, Fs, t
% Answers: x=1 , y=5, z=0
syms x y z
[x,y,z]=vpasolve(x*sin((t*2*pi*y/Fs) + z)==y0 ,...
x*sin(((t+1)*2*pi*y/Fs)+z)==y1 , ...
x*sin(((t+2)*2*pi*y/Fs)+z)==y2,[x y z],[0 1.2; 0 10; -pi pi])
x = 
0.82808197968524438542250921861996
y = 
6.0380495220795251235306856358895
z = 
%% Acceptable answers by reducing variables
clc
syms x z
y= 5;
[x,z] = vpasolve(x*sin((t*2*pi*y/Fs) + z)==y0 ,...
x*sin(((t+1)*2*pi*y/Fs)+z)==y1,[x z],[0 1.2; -pi pi])
x = 
1.0000000003041361573960955992907
z = 

サインインしてコメントする。

その他の回答 (0 件)

カテゴリ

Help Center および File ExchangeNumeric Solvers についてさらに検索

製品


リリース

R2020a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by