MATLAB Answers

Defining a function (including vector dot product) for all the points in 3D

6 ビュー (過去 30 日間)
AP
AP 2014 年 6 月 3 日
コメント済み: Matt J 2014 年 6 月 3 日
I am trying to build the following function in a three dimensional domain.
where k is a constant vector, X is the position vector, c is a constant number, and t is time.
k is a vector of size [1 3], X is an array of size [NX*NY*NZ 3] that represents the points in the three-dimensional domain, c is a constant, and t is an array of size [1 NT].
The following is the setup of the problem.
dx = 0.1;
dy = 0.5;
dz = 0.1;
[x, y, z] = meshgrid( (1:100)*dx, (1:100)*dy, (1:100)*dz );
X = [x(:) y(:) z(:)];
k = [1 2 3];
c = 0.5;
t = 0:0.1:1;
I thought about using arrayfun and repeating the vector k using repmat and dot it with X in the second dimension but I don't know what I should do for the multiplication of c and t.
In fact, the following loop works but it is very slow (takes 200 seconds on my machine).
f = zeros(numel(X)/3, numel(t));
for n = 1:numel(t)
for i = 1:numel(X)/3
f(i, n) = tan(dot(k, X(i,:)+c*t(n)));
end
end
What would be an efficient way of defining the function for all the points and all the times? The output of this function, for example, looks like an array of size [NX*NY*NZ NT].
  1 件のコメント
Udit Gupta
Udit Gupta 2014 年 6 月 3 日
Can you give an example with a few points in the X array?

サインインしてコメントする。

採用された回答

Matt J
Matt J 2014 年 6 月 3 日
f = tan( bsxfun(@plus, X*k(:), c*t) );
  3 件のコメント
Matt J
Matt J 2014 年 6 月 3 日
This is probably a bit faster
k = [1 2 3];
c = 0.5;
t = 0:0.1:1;
[x, y, z] = meshgrid( (1:100)*(k(1)*dx),
(1:100)*(k(2)*dy),
(1:100)*(k(3)*dz);
f=tan( bsxfun(@plus, x(:)+y(:)+z(:), ct) );

サインインしてコメントする。

その他の回答 (1 件)

George Papazafeiropoulos
George Papazafeiropoulos 2014 年 6 月 3 日
編集済み: George Papazafeiropoulos 2014 年 6 月 3 日
% data
dx = 0.1;
dy = 0.5;
dz = 0.1;
[x, y, z] = meshgrid( (1:100)*dx, (1:100)*dy, (1:100)*dz );
X = [x(:) y(:) z(:)];
k = [1 2 3];
c = 0.5;
t = 0:0.1:1;
lt=length(t);
% engine
u=numel(X)/3;
t=t(ones(u,1),:);
X=repmat(X,lt,1);
t=t(:);
t=t(:,ones(1,3));
u1=sum(k(ones(numel(X)/3,1),:).*(X+c*t),2);
ff=tan(u1);
% result
ff=reshape(ff,u,[])

タグ

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by