Principal Component Pursuit Matrix Optimization Problem

3 ビュー (過去 30 日間)
Algorithms Analyst
Algorithms Analyst 2014 年 1 月 15 日
編集済み: Matt J 2014 年 1 月 15 日
Hi all
How can I solve this problem
let say A is any matrix
then minimize |L|+lambda||S|| subject to L+S=A.
where L is a low rank matric and S is a sparse matrix..The superposition of L and S gives the original matrice A
  1 件のコメント
Matt J
Matt J 2014 年 1 月 15 日
編集済み: Matt J 2014 年 1 月 15 日
What does the || operator signify? Absolute value? Frobenius or some other norm? Determinant?
Also, what are the unknowns? All elements of L and S? If all matrix elements can be chosen freely (apart from the constraint L+S=A), what is to ensure that L will be low rank and what is to ensure that S will be sparse?

サインインしてコメントする。

回答 (0 件)

カテゴリ

Help Center および File ExchangeSparse Matrices についてさらに検索

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by