psi
Digamma function
Description
psi(
computes the digamma function of
x
)x
.
psi(
computes the
polygamma function of
k
,x
)x
, which is the k
th derivative of the digamma
function at x
.
Examples
Compute Digamma and Polygamma for Numeric Inputs
Compute the digamma and polygamma functions for these numbers. Because these numbers are not symbolic objects, you get the floating-point results.
[psi(1/2) psi(2, 1/2) psi(1.34) psi(1, sin(pi/3))]
ans = -1.9635 -16.8288 -0.1248 2.0372
Compute Digamma and Polygamma for Symbolic Inputs
Compute the digamma and polygamma functions for the numbers converted to symbolic objects.
[psi(sym(1/2)), psi(1, sym(1/2)), psi(sym(1/4))]
ans = [ - eulergamma - 2*log(2), pi^2/2, - eulergamma - pi/2 - 3*log(2)]
For some symbolic (exact) numbers, psi
returns unresolved symbolic
calls.
psi(sym(sqrt(2)))
ans = psi(2^(1/2))
Compute Derivatives of Digamma and Polygamma Functions
Compute the derivatives of these expressions containing the digamma and polygamma functions.
syms x diff(psi(1, x^3 + 1), x) diff(psi(sin(x)), x)
ans = 3*x^2*psi(2, x^3 + 1) ans = cos(x)*psi(1, sin(x))
Expand Digamma and Polygamma Functions
Expand the expressions containing the digamma functions.
syms x expand(psi(2*x + 3)) expand(psi(x + 2)*psi(x))
ans = psi(x + 1/2)/2 + log(2) + psi(x)/2 +... 1/(2*x + 1) + 1/(2*x + 2) + 1/(2*x) ans = psi(x)/x + psi(x)^2 + psi(x)/(x + 1)
Limit of Digamma and Polygamma Functions
Compute the limits for expressions containing the digamma and polygamma functions.
syms x limit(x*psi(x), x, 0) limit(psi(3, x), x, inf)
ans = -1 ans = 0
Compute Digamma for Matrix Input
Compute the digamma function for elements of matrix
M
and vector V
.
M = sym([0 inf; 1/3 1/2]); V = sym([1, inf]); psi(M) psi(V)
ans = [ Inf, Inf] [ - eulergamma - (3*log(3))/2 - (pi*3^(1/2))/6, - eulergamma - 2*log(2)] ans = [ -eulergamma, Inf]
Compute Polygamma for Matrix Input
Compute the polygamma function for elements of matrix
M
and vector V
. The psi
function acts elementwise on nonscalar inputs.
M = sym([0 inf; 1/3 1/2]); polyGammaM = [1 3; 2 2]; V = sym([1, inf]); polyGammaV = [6 6]; psi(polyGammaM,M) psi(polyGammaV,V)
ans = [ Inf, 0] [ - 26*zeta(3) - (4*3^(1/2)*pi^3)/9, -14*zeta(3)] ans = [ -720*zeta(7), 0]
Because all elements of polyGammaV
have the same value, you can
replace polyGammaV
by a scalar of that value. psi
expands the scalar into a nonscalar of the same size as V
and computes
the result.
V = sym([1, inf]); psi(6,V)
ans = [ -720*zeta(7), 0]
Input Arguments
More About
Tips
Calling
psi
for a number that is not a symbolic object invokes the MATLAB®psi
function. This function accepts real nonnegative argumentsx
. If you want to compute the polygamma function for a complex number, usesym
to convert that number to a symbolic object, and then callpsi
for that symbolic object.psi(0, x)
is equivalent topsi(x)
.
Version History
Introduced in R2011b