polylog
Polylogarithm
Syntax
Description
Examples
Polylogarithms of Numeric and Symbolic Arguments
polylog
returns floating-point numbers or
exact symbolic results depending on the arguments you use.
Compute the polylogarithms of numeric input arguments. The
polylog
function returns floating-point numbers.
Li = [polylog(3,-1/2), polylog(4,1/3), polylog(5,3/4)]
Li = -0.4726 0.3408 0.7697
Compute the polylogarithms of the same input arguments by converting them to symbolic
objects. For most symbolic (exact) numbers, polylog
returns
unresolved symbolic calls.
symA = [polylog(3,sym(-1/2)), polylog(sym(4),1/3), polylog(5,sym(3/4))]
symA = [ polylog(3, -1/2), polylog(4, 1/3), polylog(5, 3/4)]
Approximate the symbolic results with the default number of 32 significant digits by
using vpa
.
Li = vpa(symA)
Li = [ -0.47259784465889687461862319312655,... 0.3407911308562507524776409440122,... 0.76973541059975738097269173152535]
The polylog
function also accepts noninteger values of the order
n
. Compute polylog
for complex
arguments.
Li = polylog(-0.2i,2.5)
Li = -2.5030 + 0.3958i
Explicit Expressions for Polylogarithms
If the order of the polylogarithm is 0
,
1
, or a negative integer, then polylog
returns an explicit expression.
The polylogarithm of n = 1
is a logarithmic function.
syms x Li = polylog(1,x)
Li = -log(1 - x)
The polylogarithms of n < 1
are rational expressions.
Li = polylog(0,x)
Li = -x/(x - 1)
Li = polylog(-1,x)
Li = x/(x - 1)^2
Li = polylog(-2,x)
Li = -(x^2 + x)/(x - 1)^3
Li = polylog(-3,x)
Li = (x^3 + 4*x^2 + x)/(x - 1)^4
Li = polylog(-10,x)
Li = -(x^10 + 1013*x^9 + 47840*x^8 + 455192*x^7 + ... 1310354*x^6 + 1310354*x^5 + 455192*x^4 +... 47840*x^3 + 1013*x^2 + x)/(x - 1)^11
Special Values
The polylog
function has special values for
some parameters.
If the second argument is 0
, then the polylogarithm is equal to
0
for any integer value of the first argument. If the second
argument is 1
, then the polylogarithm is the Riemann zeta function of
the first argument.
syms n Li = [polylog(n,0), polylog(n,1)]
Li = [ 0, zeta(n)]
If the second argument is -1
, then the polylogarithm has a special
value for any integer value of the first argument except 1
.
assume(n ~= 1) Li = polylog(n,-1)
Li = zeta(n)*(2^(1 - n) - 1)
To do other computations, clear the assumption on n
by recreating
it using syms
.
syms n
Compute other special values of the polylogarithm function.
Li = [polylog(4,sym(1)), polylog(sym(5),-1), polylog(2,sym(i))]
Li = [ pi^4/90, -(15*zeta(5))/16, catalan*1i - pi^2/48]
Plot Polylogarithms
Plot the polylogarithms of the integer orders n
from -3 to 1 within the interval x = [-4 0.3]
.
syms x for n = -3:1 fplot(polylog(n,x),[-4 0.3]) hold on end title('Polylogarithm') legend('show','Location','best') hold off
Handle Expressions Containing Polylogarithms
Many functions, such as diff
and
int
, can handle expressions containing
polylog
.
Differentiate these expressions containing polylogarithms.
syms n x dLi = diff(polylog(n, x), x) dLi = diff(x*polylog(n, x), x)
dLi = polylog(n - 1, x)/x dLi = polylog(n, x) + polylog(n - 1, x)
Compute the integrals of these expressions containing polylogarithms.
intLi = int(polylog(n, x)/x, x) intLi = int(polylog(n, x) + polylog(n - 1, x), x)
intLi = polylog(n + 1, x) intLi = x*polylog(n, x)
Input Arguments
More About
Tips
polylog(2,x)
is equivalent todilog(1 - x)
.The logarithmic integral function (the integral logarithm) uses the same notation, li(x), but without an index. The toolbox provides the
logint
function to compute the logarithmic integral function.Floating-point evaluation of the polylogarithm function can be slow for complex arguments or high-precision numbers. To increase the computational speed, you can reduce the floating-point precision by using the
vpa
anddigits
functions. For more information, see Increase Speed by Reducing Precision.The polylogarithm function is related to other special functions. For example, it can be expressed in terms of the Hurwitz zeta function ζ(s,a) and the gamma function Γ(z):
Here, n ≠ 0, 1, 2, ....
References
[1] Olver, F. W. J., A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders, eds., Chapter 25. Zeta and Related Functions, NIST Digital Library of Mathematical Functions, Release 1.0.20, Sept. 15, 2018.
Version History
Introduced in R2014b
See Also
dilog
| log
| logint
| hurwitzZeta
| zeta