fitted
クラス: GeneralizedLinearMixedModel
一般化線形混合効果モデルからの当てはめた応答
説明
入力引数
一般化線形混合効果モデル。GeneralizedLinearMixedModel
オブジェクトとして指定します。このオブジェクトのプロパティとメソッドについては、GeneralizedLinearMixedModel
を参照してください。
条件付き応答のインジケーター。次のいずれかとして指定します。
値 | 説明 |
---|---|
true | 固定効果と変量効果の両方からの寄与 (条件付き) |
false | 固定効果のみからの寄与 (限界) |
当てはめた限界応答の値を得るため、fitted
は、変量効果の経験的ベイズ予測子ベクトル b を 0 に設定した状態で、応答の条件付き平均を計算します。詳細については、条件付き応答と限界応答を参照してください。
例: Conditional=false
出力引数
n 行 1 列のベクトルとして返される、当てはめた応答値。ここで、n は観測値の数です。
例
標本データを読み込みます。
load mfr
このシミュレーションされたデータは、世界中で 50 の工場を操業している製造企業から取得しており、各工場が完成品の生産のためにバッチ処理を実行しています。同社は各バッチの欠陥数を減少させるために新たな製造プロセスを開発しました。新しいプロセスの効果をテストするため、同社は実験に参加させる 20 工場を無作為に選びました。10 工場では新プロセスを実施しますが、残りの 10 工場では旧プロセスの実行を続けます。各 20 工場で、同社は 5 つのバッチ (合計 100 バッチ) を実行し以下のデータを記録しました。
新しいプロセスがバッチに使用されたかどうかを示すフラグ (
newprocess
)各バッチの処理時間。時間単位 (
time
)バッチの温度。摂氏 (
temp
)バッチで使用する化学薬品の供給業者 (
A
、B
またはC
) を示すカテゴリカル変数 (supplier
)バッチ内の欠陥数 (
defects
)
またデータに含まれる time_dev
と temp_dev
は、摂氏 20 度で 3 時間の標準プロセスから得られる時間と温度の絶対偏差をそれぞれ表します。
固定効果予測子として newprocess
、time_dev
、temp_dev
および supplier
を使用して一般化線形混合効果モデルを当てはめます。工場特有の変動に起因して品質に差がある可能性を考慮するために、factory
別にグループ化された切片の変量効果項を含めます。応答変数 defects
はポアソン分布であり、このモデルの適切なリンク関数は対数です。係数の予測にラプラス近似メソッドを使用します。ダミー変数エンコードを 'effects'
として指定すると、ダミー変数の係数の合計が 0 になります。
欠陥数はポアソン分布を使用してモデル化できます
これは一般化線形混合効果モデルに対応します
ここで
は、バッチ 処理中の工場 で実行されたバッチで観測された欠陥数です。
は、バッチ () 処理中の工場 () に対応する欠陥の平均数です。
、 および は、バッチ 処理中の工場 に対応する各変数の測定値です。たとえば は、工場 で実行されたバッチ 処理中に新プロセスが使用されたかどうかを示します。
および はエフェクト (ゼロサム) コーディングを使用するダミー変数であり、バッチ 処理中に工場 で実行されたバッチに対して、それぞれ会社
C
またはB
が加工化学薬品を供給したかどうかを示します。は、工場特有の品質変動に相当する、各工場 の変量効果の切片です。
glme = fitglme(mfr,'defects ~ 1 + newprocess + time_dev + temp_dev + supplier + (1|factory)', ... 'Distribution','Poisson','Link','log','FitMethod','Laplace','DummyVarCoding','effects');
モデルの当てはめた条件付き平均値を生成します。
mufit = fitted(glme);
観測値と当てはめた値の散布図を生成します。
figure scatter(mfr.defects,mufit) title('Residuals versus Fitted Values') xlabel('Fitted Values') ylabel('Residuals')
詳細
"条件付き応答" には、固定効果および変量効果の両方の予測子からの寄与が含まれます。"限界応答" には、固定効果からの寄与のみが含まれます。
一般化線形混合効果モデル glme
には、n 行 p 列の固定効果の計画行列 X
と、n 行 q 列の変量効果の計画行列 Z
があるものとします。また、推定した p 行 1 列の固定効果ベクトルが 、q 行 1 列の変量効果の経験的ベイズ予測子ベクトルが であるとします。
当てはめた条件付き応答は、'Conditional',true
名前と値のペアの引数に対応し、次のように定義されます。
ここで、 は線形予測子で、一般化線形混合効果モデルの固定効果および変量効果を含みます。
当てはめた限界応答は 'Conditional',false
名前と値のペアの引数に対応し、次のように定義されます。
ここで、 は線形予測子で、一般化線形混合効果モデルの固定効果の部分のみを含みます。
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)