ドキュメンテーション

最新のリリースでは、このページがまだ翻訳されていません。 このページの最新版は英語でご覧になれます。

wiener2

2 次元適応ノイズ フィルター

構文 wiener2(I,[m n],[mblock nblock],noise) は、削除されました。代わりに構文 wiener2(I,[m n],noise) を使用します。

構文

J = wiener2(I,[m n],noise)
[J,noise] = wiener2(I,[m n])

説明

wiener2 は、一定パワーの加法性ノイズにより画質が低下したグレースケール イメージをローパス フィルターで処理します。wiener2 は、各ピクセルの局所的な近傍から推定された統計値に基づいて、ピクセル単位の適応ウィーナー メソッドを使用します。

J = wiener2(I,[m n],noise) は、ピクセル単位の適応ウィーナー フィルター処理を使用してイメージ I にフィルターを適用し、サイズ m × n の近傍を使用して、局所的なイメージの平均と標準偏差を推定します。引数 [m n] を省略すると、mn は既定値の 3 に設定されます。加法性ノイズ (ガウス ホワイト ノイズ) のパワーは noise と想定されています。

また、[J,noise] = wiener2(I,[m n]) は、フィルター処理を行う前に加法性ノイズ パワーを推定します。wiener2 は、noise にこの推定値を返します。

クラス サポート

入力イメージ I は、uint8uint16int16single または double のクラスの 2 次元イメージです。出力イメージ J は、I と同じサイズとクラスです。

すべて折りたたむ

この例では、関数 wiener2 を使用して、ウィーナー フィルター (線形フィルターの 1 種) を適応的にイメージに適用します。ウィーナー フィルターはイメージの局所分散に適応します。分散が大きい部分では、wiener2 はあまり平滑化を行いません。分散が小さい部分では、wiener2 は、もっと平滑化を行います。

このアプローチは、しばしば線形フィルター処理よりも良い結果を出します。適応フィルターは、同種の線形フィルターよりも選択的で、イメージのエッジやその他の高周波数部を維持できます。さらに、設計の手間がかかりません。関数 wiener2 は、すべての予備的な計算を実行して、入力イメージに対するフィルターを実装します。ただし、wiener2 は線形フィルターよりも計算に時間がかかります。

wiener2 は、ノイズがガウス ノイズのような一定パワー ("ホワイト") の加法性ノイズの場合、最も効率よく機能します。次の例では、ガウス ノイズを付加した土星のイメージに wiener2 を適用します。

イメージをワークスペースに読み取ります。

RGB = imread('saturn.png');

イメージをトゥルーカラーからグレースケールに変換します。

I = rgb2gray(RGB);

ガウス ノイズをイメージに付加します。

J = imnoise(I,'gaussian',0,0.025);

ノイズを含むイメージを表示します。イメージがかなり大きいので、イメージの一部のみを表示します。

imshow(J(600:1000,1:600));
title('Portion of the Image with Added Gaussian Noise');

関数 wiener2 を使用してノイズを除去します。

K = wiener2(J,[5 5]);

処理後のイメージを表示します。イメージがかなり大きいので、イメージの一部のみを表示します。

figure
imshow(K(600:1000,1:600));
title('Portion of the Image with Noise Removed by Wiener Filter');

アルゴリズム

wiener2 は、各ピクセル周辺の局所的な平均と分散を推定します。

μ=1NMn1,n2ηa(n1,n2)

および

σ2=1NMn1,n2ηa2(n1,n2)μ2,

ここで、η は、イメージ A 内の各ピクセルの NM 列の局所的な近傍です。wiener2 はこれらの推定値を使用してピクセル単位のウィーナー フィルターを作成します。

b(n1,n2)=μ+σ2ν2σ2(a(n1,n2)μ),

ここで、ν2 はノイズ分散です。ノイズ分散が指定されていない場合、wiener2 は局所的に推定された分散の平均を使用します。

参照

[1] Lim, Jae S., Two-Dimensional Signal and Image Processing, Englewood Cliffs, NJ, Prentice Hall, 1990, p. 548, equations 9.26, 9.27, and 9.29.

R2006a より前に導入

この情報は役に立ちましたか?