This is machine translation

Translated by Microsoft
Mouseover text to see original. Click the button below to return to the English version of the page.

Note: This page has been translated by MathWorks. Click here to see
To view all translated materials including this page, select Country from the country navigator on the bottom of this page.

Reducing Model Order Using Pole-Zero Plots

You can use pole-zero plots of linear identified models to evaluate whether it might be useful to reduce model order. When confidence intervals for a pole-zero pair overlap, this overlap indicates a possible pole-zero cancellation.

For example, you can use the following syntax to plot a 1-standard deviation confidence interval around model poles and zeros.


If poles and zeros overlap, try estimating a lower order model.

Always validate model output and residuals to see if the quality of the fit changes after reducing model order. If the plot indicates pole-zero cancellations, but reducing model order degrades the fit, then the extra poles probably describe noise. In this case, you can choose a different model structure that decouples system dynamics and noise. For example, try ARMAX, Output-Error, or Box-Jenkins polynomial model structures with an A or F polynomial of an order equal to that of the number of uncanceled poles. For more information about estimating linear polynomial models, see Input-Output Polynomial Models.

See Also

Related Topics