このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。
慣性センサー フュージョン
慣性センサー フュージョン アルゴリズムを使用して、経時的に方向と位置を推定します。アルゴリズムは、さまざまなセンサー構成、出力要件、および運動の制約に合わせて最適化されます。複数の慣性センサーからの IMU データを直接融合できます。IMU データと GPS データを融合することもできます。
関数
ブロック
AHRS | Orientation from accelerometer, gyroscope, and magnetometer readings |
IMU Filter | Estimate orientation using IMU Filter (R2023b 以降) |
ecompass | Compute orientation from accelerometer and magnetometer readings (R2024a 以降) |
Complementary Filter | Estimate orientation using complementary filter (R2023a 以降) |
トピック
- Choose Inertial Sensor Fusion Filters
Applicability and limitations of various inertial sensor fusion filters.
- Fuse Inertial Sensor Data Using insEKF-Based Flexible Fusion Framework
The
insEKF
filter object provides a flexible framework that you can use to fuse inertial sensor data. You can fuse measurement data from various inertial sensors by selecting or customizing the sensor models used in the filter, and estimate different platform states by selecting or customizing the motion model used in the filter. TheinsEKF
insEKF
(Navigation Toolbox) object is based on a continuous-discrete extended Kalman filter, in which the state prediction step is continuous, and the measurement correction or fusion step is discrete. - Determine Orientation Using Inertial Sensors
Fuse inertial measurement unit (IMU) readings to determine orientation.
- Estimate Orientation Through Inertial Sensor Fusion
This example shows how to use 6-axis and 9-axis fusion algorithms to compute orientation. There are several algorithms to compute orientation from inertial measurement units (IMUs) and magnetic-angular rate-gravity (MARG) units. This example covers the basics of orientation and how to use these algorithms.
- Determine Pose Using Inertial Sensors and GPS
Use Kalman filters to fuse IMU and GPS readings to determine pose.
- Logged Sensor Data Alignment for Orientation Estimation
This example shows how to align and preprocess logged sensor data. This allows the fusion filters to perform orientation estimation as expected. The logged data was collected from an accelerometer and a gyroscope mounted on a ground vehicle.