メインコンテンツ

このページの内容は最新ではありません。最新版の英語を参照するには、ここをクリックします。

慣性センサー フュージョン

IMU および GPS センサー フュージョンによる方向と位置の決定

慣性センサー フュージョン アルゴリズムを使用して、経時的に方向と位置を推定します。アルゴリズムは、さまざまなセンサー構成、出力要件、および運動の制約に合わせて最適化されます。複数の慣性センサーからの IMU データを直接融合できます。IMU データと GPS データを融合することもできます。

関数

すべて展開する

ecompassOrientation from magnetometer and accelerometer readings
imufilterOrientation from accelerometer and gyroscope readings
ahrsfilterOrientation from accelerometer, gyroscope, and magnetometer readings
ahrs10filterHeight and orientation from MARG and altimeter readings
complementaryFilterEstimate orientation using complementary filter
insfilterMARGEstimate pose from MARG and GPS data
insfilterAsyncEstimate pose from asynchronous MARG and GPS data
insfilterErrorStateEstimate pose from IMU, GPS, and monocular visual odometry (MVO) data
insfilterNonholonomicEstimate pose with nonholonomic constraints
insfilter慣性ナビゲーション フィルターを作成
insEKFInertial Navigation Using Extended Kalman Filter (R2022a 以降)
insOptionsOptions for configuration of insEKF object (R2022a 以降)
insAccelerometerModel accelerometer readings for sensor fusion (R2022a 以降)
insGPSModel GPS readings for sensor fusion (R2022a 以降)
insGyroscopeModel gyroscope readings for sensor fusion (R2022a 以降)
insMagnetometerModel magnetometer readings for sensor fusion (R2022a 以降)
insMotionOrientationMotion model for 3-D orientation estimation (R2022a 以降)
insMotionPoseModel for 3-D motion estimation (R2022a 以降)
insCreateMotionModelTemplateCreate template file for motion model (R2022b 以降)
insCreateSensorModelTemplateCreate template file for sensor model (R2022b 以降)
positioning.INSMotionModelBase class for defining motion models used with insEKF (R2022a 以降)
positioning.INSSensorModelBase class for defining sensor models used with insEKF (R2022a 以降)
tunerconfigFusion filter tuner configuration options
tunernoiseNoise structure of fusion filter
tunerPlotPosePlot filter pose estimates during tuning (R2021a 以降)

ブロック

AHRSOrientation from accelerometer, gyroscope, and magnetometer readings
IMU FilterEstimate orientation using IMU Filter (R2023b 以降)
ecompassCompute orientation from accelerometer and magnetometer readings (R2024a 以降)
Complementary FilterEstimate orientation using complementary filter (R2023a 以降)

トピック

  • Choose Inertial Sensor Fusion Filters

    Applicability and limitations of various inertial sensor fusion filters.

  • Fuse Inertial Sensor Data Using insEKF-Based Flexible Fusion Framework

    The insEKF filter object provides a flexible framework that you can use to fuse inertial sensor data. You can fuse measurement data from various inertial sensors by selecting or customizing the sensor models used in the filter, and estimate different platform states by selecting or customizing the motion model used in the filter. The insEKFinsEKF (Navigation Toolbox) object is based on a continuous-discrete extended Kalman filter, in which the state prediction step is continuous, and the measurement correction or fusion step is discrete.

  • Determine Orientation Using Inertial Sensors

    Fuse inertial measurement unit (IMU) readings to determine orientation.

  • Estimate Orientation Through Inertial Sensor Fusion

    This example shows how to use 6-axis and 9-axis fusion algorithms to compute orientation. There are several algorithms to compute orientation from inertial measurement units (IMUs) and magnetic-angular rate-gravity (MARG) units. This example covers the basics of orientation and how to use these algorithms.

  • Determine Pose Using Inertial Sensors and GPS

    Use Kalman filters to fuse IMU and GPS readings to determine pose.

  • Logged Sensor Data Alignment for Orientation Estimation

    This example shows how to align and preprocess logged sensor data. This allows the fusion filters to perform orientation estimation as expected. The logged data was collected from an accelerometer and a gyroscope mounted on a ground vehicle.

注目の例