autobinning
Perform automatic binning of given predictors
Description
performs automatic binning of all predictors.sc = autobinning(sc)
Automatic binning finds binning maps or rules to bin numeric data and to group
categories of categorical data. The binning rules are stored in the
creditscorecard object. To apply the binning rules to the
creditscorecard object data, or to a new dataset, use
bindata.
performs automatic binning of the predictors given in
sc = autobinning(sc,PredictorNames)PredictorNames.
Automatic binning finds binning maps or rules to bin numeric data and to group
categories of categorical data. The binning rules are stored in the
creditscorecard object. To apply the binning rules to the
creditscorecard object data, or to a new dataset, use
bindata.
performs automatic binning of the predictors given in
sc = autobinning(___,Name,Value)PredictorNames using optional name-value pair
arguments. See the name-value argument Algorithm for a
description of the supported binning algorithms.
Automatic binning finds binning maps or rules to bin numeric data and to group
categories of categorical data. The binning rules are stored in the
creditscorecard object. To apply the binning rules to the
creditscorecard object data, or to a new dataset, use
bindata.
Examples
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Perform automatic binning using the default options. By default, autobinning bins all predictors and uses the Monotone algorithm.
sc = autobinning(sc);
Use bininfo to display the binned data for the predictor CustAge.
bi = bininfo(sc, 'CustAge')bi=8×6 table
Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ _________ _________
{'[-Inf,33)'} 70 53 1.3208 -0.42622 0.019746
{'[33,37)' } 64 47 1.3617 -0.39568 0.015308
{'[37,40)' } 73 47 1.5532 -0.26411 0.0072573
{'[40,46)' } 174 94 1.8511 -0.088658 0.001781
{'[46,48)' } 61 25 2.44 0.18758 0.0024372
{'[48,58)' } 263 105 2.5048 0.21378 0.013476
{'[58,Inf]' } 98 26 3.7692 0.62245 0.0352
{'Totals' } 803 397 2.0227 NaN 0.095205
Use plotbins to display the histogram and WOE curve for the predictor CustAge.
plotbins(sc,'CustAge')
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData
sc = creditscorecard(data);Perform automatic binning for the predictor CustIncome using the default options. By default, autobinning uses the Monotone algorithm.
sc = autobinning(sc,'CustIncome');Use bininfo to display the binned data.
bi = bininfo(sc, 'CustIncome')bi=8×6 table
Bin Good Bad Odds WOE InfoValue
_________________ ____ ___ _______ _________ __________
{'[-Inf,29000)' } 53 58 0.91379 -0.79457 0.06364
{'[29000,33000)'} 74 49 1.5102 -0.29217 0.0091366
{'[33000,35000)'} 68 36 1.8889 -0.06843 0.00041042
{'[35000,40000)'} 193 98 1.9694 -0.026696 0.00017359
{'[40000,42000)'} 68 34 2 -0.011271 1.0819e-05
{'[42000,47000)'} 164 66 2.4848 0.20579 0.0078175
{'[47000,Inf]' } 183 56 3.2679 0.47972 0.041657
{'Totals' } 803 397 2.0227 NaN 0.12285
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData
sc = creditscorecard(data);Perform automatic binning for the predictor CustIncome using the Monotone algorithm with the initial number of bins set to 20. This example explicitly sets both the Algorithm and the AlgorithmOptions name-value arguments.
AlgoOptions = {'InitialNumBins',20};
sc = autobinning(sc,'CustIncome','Algorithm','Monotone','AlgorithmOptions',...
AlgoOptions);Use bininfo to display the binned data. Here, the cut points, which delimit the bins, are also displayed.
[bi,cp] = bininfo(sc,'CustIncome')bi=11×6 table
Bin Good Bad Odds WOE InfoValue
_________________ ____ ___ _______ _________ __________
{'[-Inf,19000)' } 2 3 0.66667 -1.1099 0.0056227
{'[19000,29000)'} 51 55 0.92727 -0.77993 0.058516
{'[29000,31000)'} 29 26 1.1154 -0.59522 0.017486
{'[31000,34000)'} 80 42 1.9048 -0.060061 0.0003704
{'[34000,35000)'} 33 17 1.9412 -0.041124 7.095e-05
{'[35000,40000)'} 193 98 1.9694 -0.026696 0.00017359
{'[40000,42000)'} 68 34 2 -0.011271 1.0819e-05
{'[42000,43000)'} 39 16 2.4375 0.18655 0.001542
{'[43000,47000)'} 125 50 2.5 0.21187 0.0062972
{'[47000,Inf]' } 183 56 3.2679 0.47972 0.041657
{'Totals' } 803 397 2.0227 NaN 0.13175
cp = 9×1
19000
29000
31000
34000
35000
40000
42000
43000
47000
This example shows how to use the autobinning default Monotone algorithm and the AlgorithmOptions name-value pair arguments associated with the Monotone algorithm. The AlgorithmOptions for the Monotone algorithm are three name-value pair parameters: ‘InitialNumBins', 'Trend', and 'SortCategories'. 'InitialNumBins' and 'Trend' are applicable for numeric predictors and 'Trend' and 'SortCategories' are applicable for categorical predictors.
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Perform automatic binning for the numeric predictor CustIncome using the Monotone algorithm with 20 bins. This example explicitly sets both the Algorithm argument and the AlgorithmOptions name-value arguments for 'InitialNumBins' and 'Trend'.
AlgoOptions = {'InitialNumBins',20,'Trend','Increasing'};
sc = autobinning(sc,'CustIncome','Algorithm','Monotone',...
'AlgorithmOptions',AlgoOptions);Use bininfo to display the binned data.
bi = bininfo(sc,'CustIncome')bi=11×6 table
Bin Good Bad Odds WOE InfoValue
_________________ ____ ___ _______ _________ __________
{'[-Inf,19000)' } 2 3 0.66667 -1.1099 0.0056227
{'[19000,29000)'} 51 55 0.92727 -0.77993 0.058516
{'[29000,31000)'} 29 26 1.1154 -0.59522 0.017486
{'[31000,34000)'} 80 42 1.9048 -0.060061 0.0003704
{'[34000,35000)'} 33 17 1.9412 -0.041124 7.095e-05
{'[35000,40000)'} 193 98 1.9694 -0.026696 0.00017359
{'[40000,42000)'} 68 34 2 -0.011271 1.0819e-05
{'[42000,43000)'} 39 16 2.4375 0.18655 0.001542
{'[43000,47000)'} 125 50 2.5 0.21187 0.0062972
{'[47000,Inf]' } 183 56 3.2679 0.47972 0.041657
{'Totals' } 803 397 2.0227 NaN 0.13175
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData sc = creditscorecard(data,'IDVar','CustID');
Perform automatic binning for the predictor CustIncome and CustAge using the default Monotone algorithm with AlgorithmOptions for InitialNumBins and Trend.
AlgoOptions = {'InitialNumBins',20,'Trend','Increasing'};
sc = autobinning(sc,{'CustAge','CustIncome'},'Algorithm','Monotone',...
'AlgorithmOptions',AlgoOptions);Use bininfo to display the binned data.
bi1 = bininfo(sc, 'CustIncome')bi1=11×6 table
Bin Good Bad Odds WOE InfoValue
_________________ ____ ___ _______ _________ __________
{'[-Inf,19000)' } 2 3 0.66667 -1.1099 0.0056227
{'[19000,29000)'} 51 55 0.92727 -0.77993 0.058516
{'[29000,31000)'} 29 26 1.1154 -0.59522 0.017486
{'[31000,34000)'} 80 42 1.9048 -0.060061 0.0003704
{'[34000,35000)'} 33 17 1.9412 -0.041124 7.095e-05
{'[35000,40000)'} 193 98 1.9694 -0.026696 0.00017359
{'[40000,42000)'} 68 34 2 -0.011271 1.0819e-05
{'[42000,43000)'} 39 16 2.4375 0.18655 0.001542
{'[43000,47000)'} 125 50 2.5 0.21187 0.0062972
{'[47000,Inf]' } 183 56 3.2679 0.47972 0.041657
{'Totals' } 803 397 2.0227 NaN 0.13175
bi2 = bininfo(sc, 'CustAge')bi2=8×6 table
Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ _________ __________
{'[-Inf,35)'} 93 76 1.2237 -0.50255 0.038003
{'[35,40)' } 114 71 1.6056 -0.2309 0.0085141
{'[40,42)' } 52 30 1.7333 -0.15437 0.0016687
{'[42,44)' } 58 32 1.8125 -0.10971 0.00091888
{'[44,47)' } 97 51 1.902 -0.061533 0.00047174
{'[47,62)' } 333 130 2.5615 0.23619 0.020605
{'[62,Inf]' } 56 7 8 1.375 0.071647
{'Totals' } 803 397 2.0227 NaN 0.14183
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardData
sc = creditscorecard(data);Perform automatic binning for the predictor that is a categorical predictor called ResStatus using the default options. By default, autobinning uses the Monotone algorithm.
sc = autobinning(sc,'ResStatus');Use bininfo to display the binned data.
bi = bininfo(sc, 'ResStatus')bi=4×6 table
Bin Good Bad Odds WOE InfoValue
______________ ____ ___ ______ _________ _________
{'Tenant' } 307 167 1.8383 -0.095564 0.0036638
{'Home Owner'} 365 177 2.0621 0.019329 0.0001682
{'Other' } 131 53 2.4717 0.20049 0.0059418
{'Totals' } 803 397 2.0227 NaN 0.0097738
This example shows how to modify the data (for this example only) to illustrate binning categorical predictors using the Monotone algorithm.
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011).
load CreditCardDataAdd two new categories and updating the response variable.
newdata = data; rng('default'); %for reproducibility Predictor = 'ResStatus'; Status = newdata.status; NumObs = length(newdata.(Predictor)); Ind1 = randi(NumObs,100,1); Ind2 = randi(NumObs,100,1); newdata.(Predictor)(Ind1) = 'Subtenant'; newdata.(Predictor)(Ind2) = 'CoOwner'; Status(Ind1) = randi(2,100,1)-1; Status(Ind2) = randi(2,100,1)-1; newdata.status = Status;
Update the creditscorecard object using the newdata and plot the bins for a later comparison.
scnew = creditscorecard(newdata,'IDVar','CustID'); [bi,cg] = bininfo(scnew,Predictor)
bi=6×6 table
Bin Good Bad Odds WOE InfoValue
______________ ____ ___ ______ ________ _________
{'Home Owner'} 308 154 2 0.092373 0.0032392
{'Tenant' } 264 136 1.9412 0.06252 0.0012907
{'Other' } 109 49 2.2245 0.19875 0.0050386
{'Subtenant' } 42 42 1 -0.60077 0.026813
{'CoOwner' } 52 44 1.1818 -0.43372 0.015802
{'Totals' } 775 425 1.8235 NaN 0.052183
cg=5×2 table
Category BinNumber
______________ _________
{'Home Owner'} 1
{'Tenant' } 2
{'Other' } 3
{'Subtenant' } 4
{'CoOwner' } 5
plotbins(scnew,Predictor)

Perform automatic binning for the categorical Predictor using the default Monotone algorithm with the AlgorithmOptions name-value pair arguments for 'SortCategories' and 'Trend'.
AlgoOptions = {'SortCategories','Goods','Trend','Increasing'};
scnew = autobinning(scnew,Predictor,'Algorithm','Monotone',...
'AlgorithmOptions',AlgoOptions);Use bininfo to display the bin information. The second output parameter 'cg' captures the bin membership, which is the bin number that each group belongs to.
[bi,cg] = bininfo(scnew,Predictor)
bi=4×6 table
Bin Good Bad Odds WOE InfoValue
__________ ____ ___ ______ ________ _________
{'Group1'} 42 42 1 -0.60077 0.026813
{'Group2'} 52 44 1.1818 -0.43372 0.015802
{'Group3'} 681 339 2.0088 0.096788 0.0078459
{'Totals'} 775 425 1.8235 NaN 0.05046
cg=5×2 table
Category BinNumber
______________ _________
{'Subtenant' } 1
{'CoOwner' } 2
{'Other' } 3
{'Tenant' } 3
{'Home Owner'} 3
Plot bins and compare with the histogram plotted pre-binning.
plotbins(scnew,Predictor)

Create a creditscorecard object using the CreditCardData.mat file to load the dataMissing with missing values.
load CreditCardData.mat
head(dataMissing,5) CustID CustAge TmAtAddress ResStatus EmpStatus CustIncome TmWBank OtherCC AMBalance UtilRate status
______ _______ ___________ ___________ _________ __________ _______ _______ _________ ________ ______
1 53 62 <undefined> Unknown 50000 55 Yes 1055.9 0.22 0
2 61 22 Home Owner Employed 52000 25 Yes 1161.6 0.24 0
3 47 30 Tenant Employed 37000 61 No 877.23 0.29 0
4 NaN 75 Home Owner Employed 53000 20 Yes 157.37 0.08 0
5 68 56 Home Owner Employed 53000 14 Yes 561.84 0.11 0
fprintf('Number of rows: %d\n',height(dataMissing))Number of rows: 1200
fprintf('Number of missing values CustAge: %d\n',sum(ismissing(dataMissing.CustAge)))Number of missing values CustAge: 30
fprintf('Number of missing values ResStatus: %d\n',sum(ismissing(dataMissing.ResStatus)))Number of missing values ResStatus: 40
Use creditscorecard with the name-value argument 'BinMissingData' set to true to bin the missing numeric and categorical data in a separate bin.
sc = creditscorecard(dataMissing,'BinMissingData',true);
disp(sc) creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'status'
WeightsVar: ''
VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
NumericPredictors: {'CustID' 'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
BinMissingData: 1
IDVar: ''
PredictorVars: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
Data: [1200×11 table]
Perform automatic binning using the Merge algorithm.
sc = autobinning(sc,'Algorithm','Merge');
Display bin information for numeric data for 'CustAge' that includes missing data in a separate bin labelled <missing> and this is the last bin. No matter what binning algorithm is used in autobinning, the algorithm operates on the non-missing data and the bin for the <missing> numeric values for a predictor is always the last bin.
[bi,cp] = bininfo(sc,'CustAge');
disp(bi) Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ _______ ________ __________
{'[-Inf,32)'} 56 39 1.4359 -0.34263 0.0097643
{'[32,33)' } 13 13 1 -0.70442 0.011663
{'[33,34)' } 9 11 0.81818 -0.90509 0.014934
{'[34,65)' } 677 317 2.1356 0.054351 0.002424
{'[65,Inf]' } 29 6 4.8333 0.87112 0.018295
{'<missing>'} 19 11 1.7273 -0.15787 0.00063885
{'Totals' } 803 397 2.0227 NaN 0.057718
plotbins(sc,'CustAge')
Display bin information for categorical data for 'ResStatus' that includes missing data in a separate bin labelled <missing> and this is the last bin. No matter what binning algorithm is used in autobinning, the algorithm operates on the non-missing data and the bin for the <missing> categorical values for a predictor is always the last bin.
[bi,cg] = bininfo(sc,'ResStatus');
disp(bi) Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ _________ __________
{'Group1' } 648 332 1.9518 -0.035663 0.0010449
{'Group2' } 128 52 2.4615 0.19637 0.0055808
{'<missing>'} 27 13 2.0769 0.026469 2.3248e-05
{'Totals' } 803 397 2.0227 NaN 0.0066489
plotbins(sc,'ResStatus')
This example demonstrates using the 'Split' algorithm with categorical and numeric predictors. Load the CreditCardData.mat dataset and modify so that it contains four categories for the predictor 'ResStatus' to demonstrate how the split algorithm works.
load CreditCardData.mat x = data.ResStatus; Ind = find(x == 'Tenant'); Nx = length(Ind); x(Ind(1:floor(Nx/3))) = 'Subletter'; data.ResStatus = x;
Create a creditscorecard and use bininfo to display the 'Statistics'.
sc = creditscorecard(data,'IDVar','CustID'); [bi1,cg1] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'}); disp(bi1)
Bin Good Bad Odds WOE InfoValue
______________ ____ ___ ______ _________ __________
{'Home Owner'} 365 177 2.0621 0.019329 0.0001682
{'Tenant' } 204 112 1.8214 -0.1048 0.0029415
{'Other' } 131 53 2.4717 0.20049 0.0059418
{'Subletter' } 103 55 1.8727 -0.077023 0.00079103
{'Totals' } 803 397 2.0227 NaN 0.0098426
disp(cg1)
Category BinNumber
______________ _________
{'Home Owner'} 1
{'Tenant' } 2
{'Other' } 3
{'Subletter' } 4
Using the Split Algorithm with a Categorical Predictor
Apply presorting to the 'ResStatus' category using the default sorting by 'Odds' and specify the 'Split' algorithm.
sc = autobinning(sc,'ResStatus', 'Algorithm', 'split','AlgorithmOptions',... {'Measure','gini','SortCategories','odds','Tolerance',1e4}); [bi2,cg2] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'}); disp(bi2)
Bin Good Bad Odds WOE InfoValue
__________ ____ ___ ______ ___ _________
{'Group1'} 803 397 2.0227 0 0
{'Totals'} 803 397 2.0227 NaN 0
disp(cg2)
Category BinNumber
______________ _________
{'Tenant' } 1
{'Subletter' } 1
{'Home Owner'} 1
{'Other' } 1
Using the Split Algorithm with a Numeric Predictor
To demonstrate a split for the numeric predictor, 'TmAtAddress', first use autobinning with the default 'Monotone' algorithm.
sc = autobinning(sc,'TmAtAddress'); bi3 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'}); disp(bi3)
Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ _________ __________
{'[-Inf,23)'} 239 129 1.8527 -0.087767 0.0023963
{'[23,83)' } 480 232 2.069 0.02263 0.00030269
{'[83,Inf]' } 84 36 2.3333 0.14288 0.00199
{'Totals' } 803 397 2.0227 NaN 0.004689
Then use autobinning with the 'Split' algorithm.
sc = autobinning(sc,'TmAtAddress','Algorithm', 'Split'); bi4 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'}); disp(bi4)
Bin Good Bad Odds WOE InfoValue
____________ ____ ___ _______ _________ __________
{'[-Inf,4)'} 20 12 1.6667 -0.19359 0.0010299
{'[4,5)' } 4 7 0.57143 -1.264 0.015991
{'[5,23)' } 215 110 1.9545 -0.034261 0.00031973
{'[23,33)' } 130 39 3.3333 0.49955 0.0318
{'[33,Inf]'} 434 229 1.8952 -0.065096 0.0023664
{'Totals' } 803 397 2.0227 NaN 0.051507
Load the CreditCardData.mat dataset. This example demonstrates using the 'Merge' algorithm with categorical and numeric predictors.
load CreditCardData.matUsing the Merge Algorithm with a Categorical Predictor
To merge a categorical predictor, create a creditscorecard using default sorting by 'Odds' and then use bininfo on the categorical predictor 'ResStatus'.
sc = creditscorecard(data,'IDVar','CustID'); [bi1,cg1] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'}); disp(bi1);
Bin Good Bad Odds WOE InfoValue
______________ ____ ___ ______ _________ _________
{'Home Owner'} 365 177 2.0621 0.019329 0.0001682
{'Tenant' } 307 167 1.8383 -0.095564 0.0036638
{'Other' } 131 53 2.4717 0.20049 0.0059418
{'Totals' } 803 397 2.0227 NaN 0.0097738
disp(cg1);
Category BinNumber
______________ _________
{'Home Owner'} 1
{'Tenant' } 2
{'Other' } 3
Use autobinning and specify the 'Merge' algorithm.
sc = autobinning(sc,'ResStatus','Algorithm', 'Merge'); [bi2,cg2] = bininfo(sc,'ResStatus','Statistics',{'Odds','WOE','InfoValue'}); disp(bi2)
Bin Good Bad Odds WOE InfoValue
__________ ____ ___ ______ _________ _________
{'Group1'} 672 344 1.9535 -0.034802 0.0010314
{'Group2'} 131 53 2.4717 0.20049 0.0059418
{'Totals'} 803 397 2.0227 NaN 0.0069732
disp(cg2)
Category BinNumber
______________ _________
{'Tenant' } 1
{'Home Owner'} 1
{'Other' } 2
Using the Merge Algorithm with a Numeric Predictor
To demonstrate a merge for the numeric predictor, 'TmAtAddress', first use autobinning with the default 'Monotone' algorithm.
sc = autobinning(sc,'TmAtAddress'); bi3 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'}); disp(bi3)
Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ ______ _________ __________
{'[-Inf,23)'} 239 129 1.8527 -0.087767 0.0023963
{'[23,83)' } 480 232 2.069 0.02263 0.00030269
{'[83,Inf]' } 84 36 2.3333 0.14288 0.00199
{'Totals' } 803 397 2.0227 NaN 0.004689
Then use autobinning with the 'Merge' algorithm.
sc = autobinning(sc,'TmAtAddress','Algorithm', 'Merge'); bi4 = bininfo(sc,'TmAtAddress','Statistics',{'Odds','WOE','InfoValue'}); disp(bi4)
Bin Good Bad Odds WOE InfoValue
_____________ ____ ___ _______ _________ __________
{'[-Inf,28)'} 303 152 1.9934 -0.014566 8.0646e-05
{'[28,30)' } 27 2 13.5 1.8983 0.054264
{'[30,98)' } 428 216 1.9815 -0.020574 0.00022794
{'[98,106)' } 11 13 0.84615 -0.87147 0.016599
{'[106,Inf]'} 34 14 2.4286 0.18288 0.0012942
{'Totals' } 803 397 2.0227 NaN 0.072466
Input Arguments
Credit scorecard model, specified as a creditscorecard
object. Use creditscorecard to create a
creditscorecard object.
Predictor or predictors names to automatically bin, specified as a
character vector or a cell array of character vectors containing the name of
the predictor or predictors. PredictorNames are
case-sensitive and when no PredictorNames are defined,
all predictors in the PredictorVars property of the
creditscorecard object are binned.
Data Types: char | cell
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: sc =
autobinning(sc,'Algorithm','EqualFrequency')
Algorithm selection, specified as the comma-separated pair consisting
of 'Algorithm' and a character vector indicating
which algorithm to use. The same algorithm is used for all predictors in
PredictorNames. Possible values are:
'Monotone'— (default) Monotone Adjacent Pooling Algorithm (MAPA), also known as Maximum Likelihood Monotone Coarse Classifier (MLMCC). Supervised optimal binning algorithm that aims to find bins with a monotone Weight-Of-Evidence (WOE) trend. This algorithm assumes that only neighboring attributes can be grouped. Thus, for categorical predictors, categories are sorted before applying the algorithm (see'SortCategories'option forAlgorithmOptions). For more information, see Monotone.'Split'— Supervised binning algorithm, where a measure is used to split the data into bins. The measures supported by'Split'aregini,chi2,infovalue, andentropy. The resulting split must be such that the gain in the information function is maximized. For more information on these measures, seeAlgorithmOptionsand Split.'Merge'— Supervised automatic binning algorithm, where a measure is used to merge bins into buckets. The measures supported by'Merge'arechi2,gini,infovalue, andentropy. The resulting merging must be such that any pair of adjacent bins is statistically different from each other, according to the chosen measure. For more information on these measures, seeAlgorithmOptionsand Merge.'EqualFrequency'— Unsupervised algorithm that divides the data into a predetermined number of bins that contain approximately the same number of observations. This algorithm is also known as “equal height” or “equal depth.” For categorical predictors, categories are sorted before applying the algorithm (see'SortCategories'option forAlgorithmOptions). For more information, see Equal Frequency.'EqualWidth'— Unsupervised algorithm that divides the range of values in the domain of the predictor variable into a predetermined number of bins of “equal width.” For numeric data, the width is measured as the distance between bin edges. For categorical data, width is measured as the number of categories within a bin. For categorical predictors, categories are sorted before applying the algorithm (see'SortCategories'option forAlgorithmOptions). For more information, see Equal Width.
Data Types: char
Algorithm options for the selected Algorithm,
specified as the comma-separated pair consisting of
'AlgorithmOptions' and a cell array. Possible
values are:
For
Monotonealgorithm:{'InitialNumBins',n}— Initial number (n) of bins (default is 10).'InitialNumBins'must be an integer >2. Used for numeric predictors only.{'Trend','TrendOption'}— Determines whether the Weight-Of-Evidence (WOE) monotonic trend is expected to be increasing or decreasing. The values for'TrendOption'are:'Auto'— (Default) Automatically determines if the WOE trend is increasing or decreasing.'Increasing'— Look for an increasing WOE trend.'Decreasing'— Look for a decreasing WOE trend.
The value of the optional input parameter
'Trend'does not necessarily reflect that of the resulting WOE curve. The parameter'Trend'tells the algorithm to “look for” an increasing or decreasing trend, but the outcome may not show the desired trend. For example, the algorithm cannot find a decreasing trend when the data actually has an increasing WOE trend. For more information on the'Trend'option, see Monotone.{'SortCategories','SortOption'}— Used for categorical predictors only. Used to determine how the predictor categories are sorted as a preprocessing step before applying the algorithm. The values of'SortOption'are:'Odds'— (default) The categories are sorted by order of increasing values of odds, defined as the ratio of “Good” to “Bad” observations, for the given category.'Goods'— The categories are sorted by order of increasing values of “Good.”'Bads'— The categories are sorted by order of increasing values of “Bad.”'Totals'— The categories are sorted by order of increasing values of total number of observations (“Good” plus “Bad”).'None'— No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output frombininfo.)
For more information, see Sort Categories
For
Splitalgorithm:{'InitialNumBins',n}— Specifies an integer that determines the number (n >0) of bins that the predictor is initially binned into before splitting. Valid for numeric predictors only. Default is50.{'Measure',MeasureName}— Specifies the measure where 'MeasureName' is one of the following:'Gini'(default),'Chi2','InfoValue', or'Entropy'.{'MinBad',n}— Specifies the minimum number n (n>=0) of Bads per bin. The default value is1, to avoid pure bins.{'MaxBad',n}— Specifies the maximum number n (n>=0) of Bads per bin. The default value isInf.{'MinGood',n}— Specifies the minimum number n (n>=0) of Goods per bin. The default value is1, to avoid pure bins.{'MaxGood',n}— Specifies the maximum number n (n>=0) of Goods per bin. The default value isInf.{'MinCount',n}— Specifies the minimum number n (n>=0) of observations per bin. The default value is1, to avoid empty bins.{'MaxCount',n}— Specifies the maximum number n (n>=0) of observations per bin. The default value isInf.{'MaxNumBins',n}— Specifies the maximum number n (n>=2) of bins resulting from the splitting. The default value is5.{'Tolerance',Tol}— Specifies the minimum gain (>0) in the information function, during the iteration scheme, to select the cut-point that maximizes the gain. The default is1e4.{'Significance',n}— Significance level threshold for the chi-square statistic, above which splitting happens. Values are in the interval[0,1]. Default is0.9(90% significance level).{'SortCategories','SortOption'}— Used for categorical predictors only. Used to determine how the predictor categories are sorted as a preprocessing step before applying the algorithm. The values of'SortOption'are:'Goods'— The categories are sorted by order of increasing values of “Good.”'Bads'— The categories are sorted by order of increasing values of “Bad.”'Odds'— (default) The categories are sorted by order of increasing values of odds, defined as the ratio of “Good” to “Bad” observations, for the given category.'Totals'— The categories are sorted by order of increasing values of total number of observations (“Good” plus “Bad”).'None'— No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output frombininfo.)
For more information, see Sort Categories
For
Mergealgorithm:{'InitialNumBins',n}— Specifies an integer that determines the number (n >0) of bins that the predictor is initially binned into before merging. Valid for numeric predictors only. Default is50.{'Measure',MeasureName}— Specifies the measure where 'MeasureName' is one of the following:'Chi2'(default),'Gini','InfoValue', or'Entropy'.{'MinNumBins',n}— Specifies the minimum number n (n>=2) of bins that result from merging. The default value is2.{'MaxNumBins',n}— Specifies the maximum number n (n>=2) of bins that result from merging. The default value is5.{'Tolerance',n}— Specifies the minimum threshold below which merging happens for the information value and entropy statistics. Valid values are in the interval(0.1). Default is1e3.{'Significance',n}— Significance level threshold for the chi-square statistic, below which merging happens. Values are in the interval[0,1]. Default is0.9(90% significance level).{'SortCategories','SortOption'}— Used for categorical predictors only. Used to determine how the predictor categories are sorted as a preprocessing step before applying the algorithm. The values of'SortOption'are:'Goods'— The categories are sorted by order of increasing values of “Good.”'Bads'— The categories are sorted by order of increasing values of “Bad.”'Odds'— (default) The categories are sorted by order of increasing values of odds, defined as the ratio of “Good” to “Bad” observations, for the given category.'Totals'— The categories are sorted by order of increasing values of total number of observations (“Good” plus “Bad”).'None'— No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output frombininfo.)
For more information, see Sort Categories
For
EqualFrequencyalgorithm:{'NumBins',n}— Specifies the desired number (n) of bins. The default is{'NumBins',5}and the number of bins must be a positive number.{'SortCategories','SortOption'}— Used for categorical predictors only. Used to determine how the predictor categories are sorted as a preprocessing step before applying the algorithm. The values of'SortOption'are:'Odds'— (default) The categories are sorted by order of increasing values of odds, defined as the ratio of “Good” to “Bad” observations, for the given category.'Goods'— The categories are sorted by order of increasing values of “Good.”'Bads'— The categories are sorted by order of increasing values of “Bad.”'Totals'— The categories are sorted by order of increasing values of total number of observations (“Good” plus “Bad”).'None'— No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output frombininfo.)
For more information, see Sort Categories
For
EqualWidthalgorithm:{'NumBins',n}— Specifies the desired number (n) of bins. The default is{'NumBins',5}and the number of bins must be a positive number.{'SortCategories','SortOption'}— Used for categorical predictors only. Used to determine how the predictor categories are sorted as a preprocessing step before applying the algorithm. The values of'SortOption'are:'Odds'— (default) The categories are sorted by order of increasing values of odds, defined as the ratio of “Good” to “Bad” observations, for the given category.'Goods'— The categories are sorted by order of increasing values of “Good.”'Bads'— The categories are sorted by order of increasing values of “Bad.”'Totals'— The categories are sorted by order of increasing values of total number of observations (“Good” plus “Bad”).'None'— No sorting is applied. The existing order of the categories is unchanged before applying the algorithm. (The existing order of the categories can be seen in the category grouping optional output frombininfo.)
For more information, see Sort Categories
Example: sc =
autobinning(sc,'CustAge','Algorithm','Monotone','AlgorithmOptions',{'Trend','Increasing'})
Data Types: cell
Indicator to display the information on status of the binning process
at command line, specified as the comma-separated pair consisting of
'Display' and a character vector with a value of
'On' or 'Off'.
Data Types: char
Output Arguments
Credit scorecard model, returned as an updated
creditscorecard object containing the automatically
determined binning maps or rules (cut points or category groupings) for one
or more predictors. For more information on using the
creditscorecard object, see creditscorecard.
Note
If you have previously used the modifybins function
to manually modify bins, these changes are lost when running
autobinning because all the data is
automatically binned based on internal autobinning rules.
More About
In the context of a credit scorecard, a predictor a variable or feature used in the credit scoring model to estimate the likelihood of a borrower defaulting on a loan or credit obligation.
Predictors are statistical variables that have been identified as having a significant correlation with credit risk. They are used in predictive modeling to forecast future behavior based on historical data.
The 'Monotone' algorithm is an implementation
of the Monotone Adjacent Pooling Algorithm (MAPA), also known as Maximum Likelihood
Monotone Coarse Classifier (MLMCC); see Anderson or Thomas in the References.
Preprocessing
During the preprocessing phase, preprocessing of numeric predictors consists in
applying equal frequency binning, with the number of bins determined by the
'InitialNumBins' parameter (the default is 10 bins). The
preprocessing of categorical predictors consists in sorting the categories according
to the 'SortCategories' criterion (the default is to sort by odds
in increasing order). Sorting is not applied to ordinal predictors. See the Sort Categories definition or the
description of AlgorithmOptions option for
'SortCategories' for more information.
Main Algorithm
The following example illustrates how the 'Monotone' algorithm
arrives at cut points for numeric data.
| Bin | Good | Bad | Iteration1 | Iteration2 | Iteration3 | Iteration4 |
|---|---|---|---|---|---|---|
| 127 | 107 | 0.543 | |||
| 194 | 90 | 0.620 | 0.683 | ||
| 135 | 78 | 0.624 | 0.662 | ||
| 164 | 66 | 0.645 | 0.678 | 0.713 | |
| 183 | 56 | 0.669 | 0.700 | 0.740 | 0.766 |
Initially, the numeric data is preprocessed with an equal frequency binning. In this example, for simplicity, only the five initial bins are used. The first column indicates the equal frequency bin ranges, and the second and third columns have the “Good” and “Bad” counts per bin. (The number of observations is 1,200, so a perfect equal frequency binning would result in five bins with 240 observations each. In this case, the observations per bin do not match 240 exactly. This is a common situation when the data has repeated values.)
Monotone finds break points based on the cumulative proportion of
“Good” observations. In the'Iteration1' column, the
first value (0.543) is the number of “Good” observations in the first
bin (127), divided by the total number of observations in the bin (127+107). The
second value (0.620) is the number of “Good” observations in bins 1
and 2, divided by the total number of observations in bins 1 and 2. And so forth.
The first cut point is set where the minimum of this cumulative ratio is found,
which is in the first bin in this example. This is the end of iteration 1.
Starting from the second bin (the first bin after the location of the minimum value in the previous iteration), cumulative proportions of “Good” observations are computed again. The second cut point is set where the minimum of this cumulative ratio is found. In this case, it happens to be in bin number 3, therefore bins 2 and 3 are merged.
The algorithm proceeds the same way for two more iterations. In this particular example, in the end it only merges bins 2 and 3. The final binning has four bins with cut points at 33,000, 42,000, and 47,000.
For categorical data, the only difference is that the preprocessing step consists in reordering the categories. Consider the following categorical data:
| Bin | Good | Bad | Odds |
|---|---|---|---|
| 365 | 177 | 2.062 |
| 307 | 167 | 1.838 |
| 131 | 53 | 2.474 |
The preprocessing step, by default, sorts the categories by
'Odds'. (See the Sort Categories definition or the
description of AlgorithmOptions option for
'SortCategories' for more information.) Then, it applies the
same steps described above, shown in the following table:
| Bin | Good | Bad | Odds | Iteration1 | Iteration2 | Iteration3 |
|---|---|---|---|---|---|---|
| 'Tenant' | 307 | 167 | 1.838 | 0.648 | ||
| 'Home Owner' | 365 | 177 | 2.062 | 0.661 | 0.673 | |
| 'Other' | 131 | 53 | 2.472 | 0.669 | 0.683 | 0.712 |
In this case, the Monotone algorithm would not merge any categories. The only
difference, compared with the data before the application of the algorithm, is that
the categories are now sorted by 'Odds'.
In both the numeric and categorical examples above, the implicit
'Trend' choice is 'Increasing'. (See the
description of AlgorithmOptions option for the
'Monotone'
'Trend' option.) If you set the trend to
'Decreasing', the algorithm looks for the maximum (instead of
the minimum) cumulative ratios to determine the cut points. In that case, at
iteration 1, the maximum would be in the last bin, which would imply that all bins
should be merged into a single bin. Binning into a single bin is a total loss of
information and has no practical use. Therefore, when the chosen trend leads to a
single bin, the Monotone implementation rejects it, and the algorithm returns the
bins found after the preprocessing step. This state is the initial equal frequency
binning for numeric data and the sorted categories for categorical data. The
implementation of the Monotone algorithm by default uses a heuristic to identify the
trend ('Auto' option for 'Trend').
Split is a supervised automatic binning
algorithm, where a measure is used to split the data into buckets. The supported
measures are gini, chi2,
infovalue, and entropy.
Internally, the split algorithm proceeds as follows:
All categories are merged into a single bin.
At the first iteration, all potential cutpoint indices are tested to see which one results in the maximum increase in the information function (
Gini,InfoValue,Entropy, orChi2). That cutpoint is then selected, and the bin is split.The same procedure is reiterated for the next sub-bins.
The algorithm stops when the maximum number of bins is reached or when the splitting does not result in any additional change in the information change function.
The following table for a categorical predictor summarizes the values of the
change function at each iteration. In this example, 'Gini' is the
measure of choice, such that the goal is to see a decrease of the Gini measure at
each iteration.
| Iteration 0 Bin Number | Member | Gini | Iteration 1 Bin Number | Member | Gini | Iteration 2 Bin Number | Member | Gini |
|---|---|---|---|---|---|---|---|---|
1 | 'Tenant' | 1 | 'Tenant' | 1 | 'Tenant' | 0.45638 | ||
1 | 'Subletter' | 1 | 'Subletter' | 0.44789 | 1 | 'Subletter' | ||
1 | 'Home Owner' | 1 | 'Home Owner' | 2 | 'Home Owner' | 0.43984 | ||
1 | 'Other' | 2 | 'Other' | 0.41015 | 3 | 'Other' | 0.41015 | |
Total Gini | 0.442765 | 0.442102 | 0.441822 | |||||
| Relative Change | 0 | 0.001498 | 0.002128 |
The relative change at iteration i is with respect to the Gini measure of the entire bins at iteration i-1. The final result corresponds to that from the last iteration which, in this example, is iteration 2.
The following table for a numeric predictor summarizes the values of the change
function at each iteration. In this example, 'Gini' is the
measure of choice, such that the goal is to see a decrease of the Gini measure at
each iteration. Since most numeric predictors in datasets contain many bins, there
is a preprocessing step where the data is pre-binned into 50 equal-frequency bins.
This makes the pool of valid cutpoints to choose from for splitting smaller and more
manageable.
| Iteration 0 Bin Number | Member | Gini | Iteration 1 Bin Number | Gini | Iteration 2 Bin Number | Gini | Iteration 3 Bin Number | Gini |
|---|---|---|---|---|---|---|---|---|
1 | '21' | '[-Inf,47]' | 0.473897 | '[-Inf,47]' | 0.473897 | '[-Inf,35]' | 0.494941 | |
1 | '22' | '[47,Inf]' | 0.385238 | '[47,61]' | 0.407072 | '[35, 47]' | 0.463201 | |
1 | '23' | '[61,Inf]' | 0.208795 | '[47, 61]' | 0.407072 | |||
1 | '74' | 0 | '[61,Inf]' | 0.208795 | ||||
Total Gini | 0.442765 | 0.435035 | 0.432048 | 0.430511 | ||||
| Relative Change | 0 | 0.01746 | 0.006867 | 0.0356 |
The resulting split must be such that the information function (content) increases. As such, the best split is the one that results in the maximum information gain. The information functions supported are:
Gini: Each split results in an increase in the Gini Ratio, defined as:
G_r = 1- G_hat/G_p
G_pis the Gini measure of the parent node, that is, of the given bins/categories prior to splitting.G_hatis the weighted Gini measure for the current split:G_hat = Sum((nj/N) * Gini(j), j=1..m)
where
njis the total number of observations in the jth bin.Nis the total number of observations in the dataset.mis the number of splits for the given variable.Gini(j)is the Gini measure for the jth bin.The Gini measure for the split/node j is:
whereGini(j) = 1 - (Gj^2+Bj^2) / (nj)^2
Gj,Bj= Number of Goods and Bads for bin j.InfoValue: The information value for each split results in an increase in the total information. The split that is retained is the one which results in the maximum gain, within the acceptable gain tolerance. The Information Value (IV) for a given observation j is defined as:whereIV = sum( (pG_i-pB_i) * log(pG_i/pB_i), i=1..n)
pG_iis the distribution of Goods at observationi, that isGoods(i)/Total_Goods.pB_iis the distribution of Bads at observationi, that isBads(i)/Total_Bads.nis the total number of bins.Entropy: Each split results in a decrease in entropy variance defined as:E = -sum(ni * Ei, i=1..n)
where
niis the total count for bini, that is(ni = Gi + Bi).Eiis the entropy for row (or bin)i, defined as:Ei = -sum(Gi*log2(Gi/ni) + Bi*log2(Bi/ni))/N, i=1..n
Chi2: Chi2 is computed pairwise for each pair of bins and measures the statistical difference between two groups. Splitting is selected at a point (cutpoint or category indexing) where the maximum Chi2 value is:Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=m,m+1)
where
mtakes values from1 ... n-1, wherenis the number of bins.kis the number of classes. Herek = 2for the (Goods, Bads).Aijis the number of observations in bini,jth class.Eijis the expected frequency ofAij, which is equal to(Ri*Cj)/N.Riis the number of observations in bini, which is equal tosum(Aij, j=1..k).Cjis the number of observations in thejth class, which is equal tosum(Aij, I = m,m+1).Nis the total number of observations, which is equal tosum(Cj, j=1..k).
The Chi2 measure for the entire sample (as opposed to the
pairwise Chi2 measure for adjacent bins)
is:
Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=1..n)
Merge is a supervised automatic binning
algorithm, where a measure is used to merge bins into buckets. The supported
measures are chi2, gini,
infovalue, and entropy.
Internally, the merge algorithm proceeds as follows:
All categories are initially in separate bins.
The user selected information function (
Chi2,Gini,InfoValueorEntropy) is computed for any pair of adjacent bins.At each iteration, the pair with the smallest information change measured by the selected information function is merged.
The merging continues until either:
All pairwise information values are greater than the threshold set by the significance level or the relative change is smaller than the tolerance.
If at the end, the number of bins is still greater than the
MaxNumBinsallowed, merging is forced until there are at mostMaxNumBinsbins. Similarly, merging stops when there are onlyMinNumBinsbins.
For categorical, original bins/categories are pre-sorted according to the sorting of choice set by the user. For numeric data, the data is preprocessed to get
InitialNumBinsbins of equal frequency before the merging algorithm starts.
The following table for a categorical predictor summarizes the values of the
change function at each iteration. In this example, 'Chi2' is the
measure of choice. The default sorting by Odds is applied as a
preprocessing step. The Chi2 value reported below at row
i is for bins i and
i+1. The significance level is 0.9 (90%), so
that the inverse Chi2 value is 2.705543. This
is the threshold below which adjacent pairs of bins are merged. The minimum number
of bins is 2.
| Iteration 0 Bin Number | Member | Chi2 | Iteration 1 Bin Number | Member | Chi2 | Iteration 2 Bin Number | Member | Chi2 |
|---|---|---|---|---|---|---|---|---|
1 | 'Tenant' | 1.007613 | 1 | 'Tenant' | 0.795920 | 1 | 'Tenant' | |
2 | 'Subletter' | 0.257347 | 2 | 'Subletter' | 1 | 'Subletter' | ||
3 | 'Home Owner' | 1.566330 | 2 | 'Home Owner' | 1.522914 | 1 | 'Home Owner' | 1.797395 |
4 | 'Other' | 3 | 'Other' | 2 | 'Other' | |||
Total Chi2 | 2.573943 | 2.317717 | 1.797395 |
The following table for a numeric predictor summarizes the values of the change
function at each iteration. In this example, 'Chi2' is the
measure of choice.
| Iteration 0 Bin Number | Chi2 | Iteration 1 Bins | Chi2 | Final Iteration Bins | Chi2 | |
|---|---|---|---|---|---|---|
'[-Inf,22]' | 0.11814 | '[-Inf,22]' | 0.11814 | '[-Inf,33]' | 8.4876 | |
'[22,23]' | 1.6464 | '[22,23]' | 1.6464 | '[33, 48]' | 7.9369 | |
... | ... | '[48,64]' | 9.956 | |||
'[58,59]' | 0.311578 | '[58,59]' | 0.27489 | '[64,65]' | 9.6988 | |
'[59,60]' | 0.068978 | '[59,61]'
| 1.8403 | '[65,Inf]' | NaN | |
'[60,61]' | 1.8709 | '[61,62]' | 5.7946 | ... | ||
'[61,62]' | 5.7946 | ... | ||||
| ... | '[69,70]' | 6.4271 | ||||
'[69,70]' | 6.4271 | '[70,Inf]' | NaN | |||
'[70,Inf]' | NaN | |||||
Total Chi2 | 67.467 | 67.399 | 23.198 |
The resulting merging must be such that any pair of adjacent bins is statistically
different from each other, according to the chosen measure. The measures supported
for Merge are:
Chi2: Chi2 is computed pairwise for each pair of bins and measures the statistical difference between two groups. Merging is selected at a point (cutpoint or category indexing) where the maximum Chi2 value is:Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=m,m+1)
where
mtakes values from1 ... n-1, andnis the number of bins.kis the number of classes. Herek = 2for the (Goods, Bads).Aijis the number of observations in bini,jth class.Eijis the expected frequency ofAij, which is equal to(Ri*Cj)/N.Riis the number of observations in bini, which is equal tosum(Aij, j=1..k).Cjis the number of observations in thejth class, which is equal tosum(Aij, I = m,m+1).Nis the total number of observations, which is equal tosum(Cj, j=1..k).The
Chi2measure for the entire sample (as opposed to the pairwiseChi2measure for adjacent bins) is:Chi2 = sum(sum((Aij - Eij)^2/Eij , j=1..k), i=1..n)
Gini: Each merge results in a decrease in the Gini Ratio, defined as:
G_r = 1- G_hat/G_p
G_pis the Gini measure of the parent node, that is, of the given bins/categories prior to merging.G_hatis the weighted Gini measure for the current merge:G_hat = Sum((nj/N) * Gini(j), j=1..m)
where
njis the total number of observations in the jth bin.Nis the total number of observations in the dataset.mis the number of merges for the given variable.Gini(j)is the Gini measure for the jth bin.The Gini measure for the merge/node j is:
whereGini(j) = 1 - (Gj^2+Bj^2) / (nj)^2
Gj,Bj= Number of Goods and Bads for bin j.InfoValue: The information value for each merge will result in a decrease in the total information. The merge that is retained is the one which results in the minimum gain, within the acceptable gain tolerance. The Information Value (IV) for a given observation j is defined as:whereIV = sum( (pG_i-pB_i) * log(pG_i/pB_i), i=1..n)
pG_iis the distribution of Goods at observationi, that isGoods(i)/Total_Goods.pB_iis the distribution of Bads at observationi, that isBads(i)/Total_Bads.nis the total number of bins.Entropy: Each merge results in an increase in entropy variance defined as:E = -sum(ni * Ei, i=1..n)
where
niis the total count for bini, that is(ni = Gi + Bi).Eiis the entropy for row (or bin)i, defined as:Ei = -sum(Gi*log2(Gi/ni) + Bi*log2(Bi/ni))/N, i=1..n
Note
When using the Merge algorithm, if there are pure bins (bins that have
either zero count of Goods or zero count of
Bads), the statistics such as Information Value and
Entropy have non-finite values. To account for this, a frequency shift of
.5 is applied for computing various statistics
whenever the algorithm finds pure bins.
Unsupervised algorithm that divides the data into a predetermined number of bins that contain approximately the same number of observations.
EqualFrequency is defined as:
Let v[1], v[2],..., v[N] be the sorted list of different values or categories observed in the data. Let f[i] be the frequency of v[i]. Let F[k] = f[1]+...+f[k] be the cumulative sum of frequencies up to the kth sorted value. Then F[N] is the same as the total number of observations.
Define AvgFreq = F[N] /
NumBins, which is the ideal average frequency per bin after
binning. The nth cut point index is the index
k such that the distance abs(F[k] -
n*AvgFreq) is minimized.
This rule attempts to match the cumulative frequency up to the nth bin. If a single value contains too many observations, equal frequency bins are not possible, and the above rule yields less than NumBins total bins. In that case, the algorithm determines NumBins bins by breaking up bins, in the order in which the bins were constructed.
The preprocessing of categorical predictors consists in sorting the categories
according to the 'SortCategories' criterion (the default is to
sort by odds in increasing order). Sorting is not applied to ordinal predictors. See
the Sort Categories definition or the
description of AlgorithmOptions option for
'SortCategories' for more information.
Unsupervised algorithm that divides the range of values in the domain of the predictor variable into a predetermined number of bins of “equal width.” For numeric data, the width is measured as the distance between bin edges. For categorical data, width is measured as the number of categories within a bin.
The EqualWidth option is defined as:
For numeric data, if MinValue and MaxValue
are the minimum and maximum data values,
then
Width = (MaxValue - MinValue)/NumBins
CutPoints are set to MinValue + Width,
MinValue + 2*Width, ... MaxValue – Width.
If a MinValue or MaxValue have not been
specified using the modifybins function, the
EqualWidth option sets MinValue and
MaxValue to the minimum and maximum values observed in the
data.For categorical data, if there are NumCats numbers of original categories, then
Width = NumCats / NumBins,
The preprocessing of categorical predictors consists in sorting the categories
according to the 'SortCategories' criterion (the default is to
sort by odds in increasing order). Sorting is not applied to ordinal predictors. See
the Sort Categories definition or the
description of AlgorithmOptions option for
'SortCategories' for more information.
As a preprocessing step for categorical data,
'Monotone', 'EqualFrequency', and
'EqualWidth' support the 'SortCategories'
input. This serves the purpose of reordering the categories before applying the main
algorithm. The default sorting criterion is to sort by 'Odds'.
For example, suppose that the data originally looks like this:
| Bin | Good | Bad | Odds |
|---|---|---|---|
'Home Owner' | 365 | 177 | 2.062 |
'Tenant' | 307 | 167 | 1.838 |
'Other' | 131 | 53 | 2.472 |
After the preprocessing step, the rows would be sorted by
'Odds' and the table looks like this:
| Bin | Good | Bad | Odds |
|---|---|---|---|
'Tenant' | 307 | 167 | 1.838 |
'Home Owner' | 365 | 177 | 2.062 |
'Other' | 131 | 53 | 2.472 |
The three algorithms only merge adjacent bins, so the initial order of the
categories makes a difference for the final binning. The 'None'
option for 'SortCategories' would leave the original table
unchanged. For a description of the sorting criteria supported, see the description
of the AlgorithmOptions option for
'SortCategories'.
Upon the construction of a scorecard, the initial order of the categories, before
any algorithm or any binning modifications are applied, is the order shown in the
first output of bininfo. If the bins have been
modified (either manually with modifybins or automatically with
autobinning), use the optional output
(cg,'category grouping') from bininfo to get the current order of
the categories.
The 'SortCategories' option has no effect on categorical
predictors for which the 'Ordinal' parameter is set to true (see
the 'Ordinal' input parameter in MATLAB® categorical arrays for categorical. Ordinal data has a
natural order, which is honored in the preprocessing step of the algorithms by
leaving the order of the categories unchanged. Only categorical predictors whose
'Ordinal' parameter is false (default option) are subject to
reordering of categories according to the 'SortCategories'
criterion.
When observation weights are defined using the optional
WeightsVar argument when creating a
creditscorecard object, instead of counting the rows that are
good or bad in each bin, the autobinning function accumulates the
weight of the rows that are good or bad in each bin.
The “frequencies” reported are no longer the basic “count” of rows, but the
“cumulative weight” of the rows that are good or bad and fall in a particular bin.
Once these “weighted frequencies” are known, all other relevant statistics
(Good, Bad, Odds,
WOE, and InfoValue) are computed with the
usual formulas. For more information, see Credit Scorecard Modeling Using Observation Weights.
References
[1] Anderson, R. The Credit Scoring Toolkit. Oxford University Press, 2007.
[2] Kerber, R. "ChiMerge: Discretization of Numeric Attributes." AAAI-92 Proceedings. 1992.
[3] Liu, H., et. al. Data Mining, Knowledge, and Discovery. Vol 6. Issue 4. October 2002, pp. 393-423.
[4] Refaat, M. Data Preparation for Data Mining Using SAS. Morgan Kaufmann, 2006.
[5] Refaat, M. Credit Risk Scorecards: Development and Implementation Using SAS. lulu.com, 2011.
[6] Thomas, L., et al. Credit Scoring and Its Applications. Society for Industrial and Applied Mathematics, 2002.
Version History
Introduced in R2014b
See Also
creditscorecard | bininfo | predictorinfo | modifypredictor | modifybins | bindata | plotbins | fitmodel | displaypoints | formatpoints | score | setmodel | probdefault | validatemodel
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)