modifypredictor
Set properties of credit scorecard predictors
Description
sets the properties of the credit scorecard predictors.sc = modifypredictor(sc,PredictorName)
sets the properties of the credit scorecard predictors using optional name-value
pair arguments.sc = modifypredictor(___,Name,Value)
Examples
Create a creditscorecard object using the CreditCardData.mat file to load the data (using a dataset from Refaat 2011). In practice, categorical data many times is represented with numeric values. To show the case where categorical data is given as numeric data, the data for the variable 'ResStatus' is intentionally converted to numeric values.
load CreditCardData data.ResStatus = double(data.ResStatus); sc = creditscorecard(data,'IDVar','CustID')
sc =
creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'status'
WeightsVar: ''
VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
NumericPredictors: {'CustAge' 'TmAtAddress' 'ResStatus' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
CategoricalPredictors: {'EmpStatus' 'OtherCC'}
BinMissingData: 0
IDVar: 'CustID'
PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
Data: [1200×11 table]
[T,Stats] = predictorinfo(sc,'ResStatus')T=1×4 table
PredictorType LatestBinning LatestFillMissingType LatestFillMissingValue
_____________ _________________ _____________________ ______________________
ResStatus {'Numeric'} {'Original Data'} {'Original'} {0×0 double}
Stats=4×1 table
Value
_______
Min 1
Max 3
Mean 1.7017
Std 0.71833
Note that 'ResStatus' appears as part of the NumericPredictors property. Assume that you want 'ResStatus' to be treated as categorical data. For example, you may want to allow automatic binning algorithms to reorder the categories. Use modifypredictor to change the 'PredictorType' of the PredictorName 'ResStatus' from numeric to categorical.
sc = modifypredictor(sc,'ResStatus','PredictorType','Categorical')
sc =
creditscorecard with properties:
GoodLabel: 0
ResponseVar: 'status'
WeightsVar: ''
VarNames: {'CustID' 'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate' 'status'}
NumericPredictors: {'CustAge' 'TmAtAddress' 'CustIncome' 'TmWBank' 'AMBalance' 'UtilRate'}
CategoricalPredictors: {'ResStatus' 'EmpStatus' 'OtherCC'}
BinMissingData: 0
IDVar: 'CustID'
PredictorVars: {'CustAge' 'TmAtAddress' 'ResStatus' 'EmpStatus' 'CustIncome' 'TmWBank' 'OtherCC' 'AMBalance' 'UtilRate'}
Data: [1200×11 table]
[T,Stats] = predictorinfo(sc,'ResStatus')T=1×5 table
PredictorType Ordinal LatestBinning LatestFillMissingType LatestFillMissingValue
_______________ _______ _________________ _____________________ ______________________
ResStatus {'Categorical'} false {'Original Data'} {'Original'} {0×0 double}
Stats=3×1 table
Count
_____
C1 542
C2 474
C3 184
Notice that 'ResStatus' now appears as part of the 'Categorical' predictors.
Input Arguments
Credit scorecard model, specified as a
creditscorecard object. Use creditscorecard to create
a creditscorecard object.
Predictor name, specified using a character vector or cell array of
character vectors containing the names of the credit scorecard
predictors. PredictorName is case-sensitive.
Data Types: char | cell
Name-Value Arguments
Specify optional pairs of arguments as
Name1=Value1,...,NameN=ValueN, where Name is
the argument name and Value is the corresponding value.
Name-value arguments must appear after other arguments, but the order of the
pairs does not matter.
Before R2021a, use commas to separate each name and value, and enclose
Name in quotes.
Example: sc =
modifypredictor(sc,{'CustAge','CustIncome'},'PredictorType','Categorical','Ordinal',true)
Predictor type that one or more predictors are converted to,
specified as the comma-separated pair consisting of
'PredictorType' and a character vector. Possible
values are:
''— No conversion occurs.'Numeric'— The predictor data specified byPredictorNameis converted to numeric.'Categorical'— The predictor data specified byPredictorNameis converted to categorical.
Data Types: char
Indicator for whether predictors being converted to categorical or
existing categorical predictors are treated as ordinal data, specified
as the comma-separated pair consisting of 'Ordinal'
and a logical with values true or
false.
Note
This optional input parameter is only used for predictors of
type 'Categorical'.
Data Types: logical
Output Arguments
Credit scorecard model, returned as an updated
creditscorecard object.
Version History
Introduced in R2015b
See Also
MATLAB Command
You clicked a link that corresponds to this MATLAB command:
Run the command by entering it in the MATLAB Command Window. Web browsers do not support MATLAB commands.
Web サイトの選択
Web サイトを選択すると、翻訳されたコンテンツにアクセスし、地域のイベントやサービスを確認できます。現在の位置情報に基づき、次のサイトの選択を推奨します:
また、以下のリストから Web サイトを選択することもできます。
最適なサイトパフォーマンスの取得方法
中国のサイト (中国語または英語) を選択することで、最適なサイトパフォーマンスが得られます。その他の国の MathWorks のサイトは、お客様の地域からのアクセスが最適化されていません。
南北アメリカ
- América Latina (Español)
- Canada (English)
- United States (English)
ヨーロッパ
- Belgium (English)
- Denmark (English)
- Deutschland (Deutsch)
- España (Español)
- Finland (English)
- France (Français)
- Ireland (English)
- Italia (Italiano)
- Luxembourg (English)
- Netherlands (English)
- Norway (English)
- Österreich (Deutsch)
- Portugal (English)
- Sweden (English)
- Switzerland
- United Kingdom (English)